1
|
Manhas N, Kumar G, Dhawan S, Makhanya T, Singh P. A Systematic Review of Synthetic and Anticancer and Antimicrobial Activity of Quinazoline/Quinazolin-4-one Analogues. ChemistryOpen 2025:e202400439. [PMID: 39871708 DOI: 10.1002/open.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Indexed: 01/29/2025] Open
Abstract
Quinazolines/quinazolin-4-ones are significant nitrogen-containing heterocycles that exist in various natural products and synthetic scaffolds with diverse medicinal and pharmacological applications. Researchers across the globe have explored numerous synthetic strategies to develop safer and more potent quinazoline/quinazolinone analogues, particularly for combating cancer and microbial infections. This review systematically examines scholarly efforts toward understanding this scaffold's synthetic pathways and medicinal relevance, emphasizing the role of metal and non-metal catalysts and other reagents in their synthesis. Additionally, the article discusses selected compounds' anticancer and antimicrobial properties, with a brief look into their structure-activity relationships.
Collapse
Affiliation(s)
- Neha Manhas
- Department of Chemistry, Durban University of Technology, ML Sultan Campus, Durban, 4000, South Africa
| | - Gobind Kumar
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Sanjeev Dhawan
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Talent Makhanya
- Department of Chemistry, Durban University of Technology, ML Sultan Campus, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| |
Collapse
|
2
|
Wang Y, Zhang X, Li S, Guo M, Ma W, Yuan J. One-pot Synthesis of 2,3-disubstituted-4(3 H)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter. Curr Org Synth 2024; 21:957-963. [PMID: 37581515 DOI: 10.2174/1570179421666230815151540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 08/16/2023]
Abstract
As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.
Collapse
Affiliation(s)
- Yin Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiuyu Zhang
- Department of Pharmacy, The People's Hospital of Kaizhou District, Chongqing, China
| | - Suzhen Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mengyi Guo
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wanqian Ma
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
3
|
Shan QC, Liu S, Shen Y, Ma M, Duan XH, Gao P, Guo LN. Switchable In Situ SO 2 Capture and CF 3 Migration of Enol Triflates with Peroxyl Compounds under Iron Catalysis. Org Lett 2022; 24:6653-6657. [PMID: 36048533 DOI: 10.1021/acs.orglett.2c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable in situ SO2 capture and CF3 migration of enol triflates with peroxyl compounds under iron catalysis are presented. By regulating the structure of peroxides, a variety of keto-functionalized dialkyl sulfones and α-trifluoromethyl ketones were selectively synthesized in good yields under mild conditions.
Collapse
Affiliation(s)
- Qi-Chao Shan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuncheng Shen
- Shaanxi Yuneng Group Energy and Chemical Research Institute Co., Ltd, Yu'lin 719000, China
| | - Mingming Ma
- Shaanxi Yuneng Group Energy and Chemical Research Institute Co., Ltd, Yu'lin 719000, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Wu J, Yu X, Zhong L, Jin K, Zhao G, Zhu J, Shi H, Wei Y. Dimethyl Sulfoxide as Methyl Source for the Synthesis of Quinazolinones under Metal‐Free Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiaoxiao Yu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Liangchen Zhong
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Kejun Jin
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Guoxu Zhao
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Jianye Zhu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Haowen Shi
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Yuanyuan Wei
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
5
|
DMSO as C1 source under metal‐and oxidant‐free conditions: NH4SCN mediated synthesis of quinazolinone and dihydroquinazolin‐4(1H)‐one derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Lin WY, Govindan K, Duraisamy T, Jayaram A, Senadi GC. Copper-Catalyzed Oxidative Cyclization of 2-Aminobenzamide Derivatives: Efficient Syntheses of Quinazolinones and Indazolones. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1667-3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractA simple copper-catalyzed assembly to formulate quinazolinone and indazolone derivatives in a single protocol manner is reported. These transformations are based on the fact that DMF can serve as a reaction solvent and one carbon synthon for the construction of heterocyclic rings. Moreover, this protocol features base-free and Brønsted acid free environmentally benign conditions with broad synthetic scope. A good scalability is demonstrated.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University
- Department of Medical Research, Kaohsiung Medical University Hospital
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University
| | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University
| | | | | | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology
| |
Collapse
|
7
|
Huang C, Zhou Y, Yu XX, Wang LS, Wu YD, Wu AX. I 2/CuCl 2-Copromoted Formal [4 + 1 + 1] Cyclization of Methyl Ketones, 2-Aminobenzonitriles, and Ammonium Acetate: Direct Access to 2-Acyl-4-aminoquinazolines. J Org Chem 2021; 86:16916-16925. [PMID: 34753287 DOI: 10.1021/acs.joc.1c02096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report an I2/CuCl2-copromoted diamination of C(sp3)-H bonds for the preparation of 2-acyl-4-aminoquinazolines from methyl ketones, 2-aminobenzonitriles, and ammonium acetate. This reaction features operational simplicity, commercially available substrates, mild reaction conditions, and good functional group compatibility. Mechanistic studies indicate that CuCl2 plays a pivotal role in this transformation. This study uses a methyl group as a novel input to construct 2-acyl-4-aminoquinazoline derivatives for the first time.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Sarma D, Majumdar B, Deori B, Jain S, Sarma TK. Photoinduced Enhanced Decomposition of TBHP: A Convenient and Greener Pathway for Aqueous Domino Synthesis of Quinazolinones and Quinoxalines. ACS OMEGA 2021; 6:11902-11910. [PMID: 34056344 PMCID: PMC8154027 DOI: 10.1021/acsomega.1c00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Catalyst-free photoinduced processes in aqueous medium represent significant advancement toward development of green and sustainable pathways in organic synthesis. tert-Butyl hydroperoxide (TBHP) is a widely used oxidant in organic reactions, where the decomposition of TBHP into its radicals by metal catalysts or other reagents is a key factor for efficient catalytic outcome. Herein, we report a simple and environmentally friendly visible light-promoted synthetic pathway for the synthesis of N-heterocyclic moieties, such as quinazolinones and quinoxalines, in the presence of TBHP as an oxidizing agent in aqueous medium that requires no catalysts/photocatalysts. The enhanced rate of decomposition to generate free radicals from TBHP upon visible light irradiation is the driving force for the domino reaction.
Collapse
|
9
|
Zhou Z, Hu K, Wang J, Li Z, Zhang Y, Zha Z, Wang Z. Electrosynthesis of Quinazolines and Quinazolinones via an Anodic Direct Oxidation C(sp 3)-H Amination/C-N Cleavage of Tertiary Amine in Aqueous Medium. ACS OMEGA 2020; 5:31963-31973. [PMID: 33344851 PMCID: PMC7745442 DOI: 10.1021/acsomega.0c04865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 05/07/2023]
Abstract
An electrochemical synthesis for quinazolines and quinazolinones was developed via a C(sp3)-H amination/C-N cleavage by virtue of the anodic oxidation. The reaction can be carried out in aqueous media under mild conditions to afford the desired products with high yields. The reaction mechanism was proposed after detailed investigation.
Collapse
|
10
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
11
|
Lee HS, Kang JS, Choi BK, Lee HS, Lee YJ, Lee J, Shin HJ. Phenazine Derivatives with Anti-Inflammatory Activity from the Deep-Sea Sediment-Derived Yeast-Like Fungus Cystobasidium laryngis IV17-028. Mar Drugs 2019; 17:md17080482. [PMID: 31430989 PMCID: PMC6722648 DOI: 10.3390/md17080482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022] Open
Abstract
Three new phenazine derivatives (1–3), along with known compounds (4–7) of saphenic acid derivatives, were isolated from a deep-sea sediment-derived yeast-like fungus Cystobasidium larynigs collected from the Indian Ocean. The structures of the new compounds (1–3) were determined by analysis of spectroscopic data, semi-synthesis and comparison of optical rotation values. All the isolated compounds (1–7), except for 2, showed nitric oxide (NO) production inhibitory effect against lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells without cytotoxicity at concentrations up to 30 μg/mL. This is the first report on the yeast-like fungus Cystobasidium laryngis producing phenazines and anti-inflammatory activity of 1–7 including saphenic acid (4).
Collapse
Affiliation(s)
- Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudangi-ro, Ochang-eup, Cheongwon-gu, Cheongju 28116, Korea
| | - Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Jihoon Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea.
| |
Collapse
|
12
|
Xie L, Lu C, Jing D, Ou X, Zheng K. Metal-Free Synthesis of Polycyclic Quinazolinones Enabled by a (NH4
)2
S2
O8
-Promoted Intramolecular Oxidative Cyclization. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lijuan Xie
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Dong Jing
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Xinrui Ou
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu P. R. China
| |
Collapse
|
13
|
Jiang J, Cai X, Hu Y, Liu X, Chen X, Wang SY, Zhang Y, Zhang S. Thermo-Promoted Reactions of Anthranils with Carboxylic Acids, Amines, Phenols, and Malononitrile under Catalyst-Free Conditions. J Org Chem 2019; 84:2022-2031. [DOI: 10.1021/acs.joc.8b02890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Functional Substances of Chinese of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Yanwei Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Xuejun Liu
- Shanghai Fosun Shino Tech Pharmaceutical Co., Ltd., Building 7, No. 1999 ZhangHeng Road, Shanghai, 201203, China
| | - Xiaodong Chen
- Shanghai Fosun Shino Tech Pharmaceutical Co., Ltd., Building 7, No. 1999 ZhangHeng Road, Shanghai, 201203, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|