1
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
2
|
Chen S, Li Y, Chen X, Li L, Lu Q, Guo E, Si C, Wei M, Han X. Isomerization of surface functionalized SWCNTs and the critical influence on photoluminescence: static calculations and excited-state dynamics simulations. Phys Chem Chem Phys 2024; 26:12003-12008. [PMID: 38576321 DOI: 10.1039/d3cp05115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) functionalized with sparse surface chemical groups are promising for a variety of optical applications such as quantum information and bio-imaging. However, the luminescence efficiencies and stability, two key aspects, undoubtedly govern their practical usage. Herein, we assess the surface migration of oxygen and triazine groups on as-modified SWCNT fragments by adopting transition state theory and explore the de-excitation of oxygen-functionalized SWCNT fragments by performing non-adiabatic excited-state dynamics simulations. According to the predicted moderate or even small reaction barriers, the migration of both oxygen and triazine groups is feasible from an sp3 defect configuration forming an energetically more stable sp2 configuration at moderate or even room temperatures. Such isomerization leads to drastically different light emission capabilities as indicated by the large or zero oscillator strengths. During the dynamics simulations, the lowest excited singlet (S1) state rapidly decays in energy within 20 fs and then fluctuates until the end, providing insights into the emission mechanism of SWCNTs. This study highlights the potential intrinsic limitations of surface-functionalized SWCNTs for luminescence applications.
Collapse
Affiliation(s)
- Shunwei Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yi Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinxin Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lingyun Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qifang Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Enyan Guo
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Conghui Si
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingzhi Wei
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiujun Han
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
3
|
Zhang L, Wang LL, Fang DC. DFT Case Study on the Comparison of Ruthenium-Catalyzed C-H Allylation, C-H Alkenylation, and Hydroarylation. ACS OMEGA 2022; 7:6133-6141. [PMID: 35224376 PMCID: PMC8867598 DOI: 10.1021/acsomega.1c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Density functional calculations at the B3LYP-D3+IDSCRF/TZP-DKH(-dfg) level of theory have been performed to understand the mechanism of ruthenium-catalyzed C-H allylation reported in the literature in depth. The plausible pathway consisted of four sequential processes, including C-H activation, migratory insertion, amide extrusion, and recovery of the catalyst, in which C-H activation was identified as the rate-determining step. The amide extrusion step could be promoted kinetically by trifluoroacetic acid since its mediation lowered the free-energy barrier from 32.1 to 12.2 kcal/mol. Additional calculations have been performed to explore other common pathways between arenes and alkenes, such as C-H alkenylation and hydroarylation. A comparison of the amide extrusion and β-H elimination steps established the following reactivity sequence of the leaving groups: protonated amide group > β-H group > unprotonated amide group. The suppression of hydroarylation was attributed to the sluggishness of the Ru-C protonation step as compared to the amide extrusion step. This study can unveil factors favoring the C-H allylation reaction.
Collapse
Affiliation(s)
- Lei Zhang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Ling-Ling Wang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - De-Cai Fang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Wang C, Zhang L, Mou Z, Feng W, Li Z, Yang H, Chen X, Lv S, Li Z. Direct 18F-Labeling of Biomolecules via Spontaneous Site-Specific Nucleophilic Substitution by F - on Phosphonate Prostheses. Org Lett 2021; 23:4261-4266. [PMID: 33942615 DOI: 10.1021/acs.orglett.1c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe a high radiochemical yield late-stage direct 18F-labeling of bare biomolecules containing common active groups. Spontaneity and site-selectivity are attributed to the remarkably higher rates of nucleophilic substitution reactions on phosphonates than on other electrophiles by F- at various hydrogen bond forms. Rapid access to many medicinally significant 18F-labeled biomolecules is achieved at 21-68% radiochemical yields and 35.9-55.1 GBq μmol-1 molar activities both manually or automatically.
Collapse
Affiliation(s)
- Chao Wang
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lei Zhang
- Tianjin Engineering Technology Centre of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Zhaobiao Mou
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Wanru Feng
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zhongjing Li
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Hongzhang Yang
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xueyuan Chen
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shengji Lv
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zijing Li
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
5
|
Ankade SB, Shabade AB, Soni V, Punji B. Unactivated Alkyl Halides in Transition-Metal-Catalyzed C–H Bond Alkylation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05580] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anand B. Shabade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vineeta Soni
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
6
|
Zhou Y, Xue R, Feng Y, Zhang L. How does HOTf/HFIP Cooperative System Catalyze the Ring‐Opening Reaction of Cyclopropanes? A DFT Study. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yongzhu Zhou
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of ScienceTianjin Chengjian University Tianjin 300384 P. R. of China
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Rong‐Chao Xue
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of ScienceTianjin Chengjian University Tianjin 300384 P. R. of China
| | - Yaqing Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of ScienceTianjin Chengjian University Tianjin 300384 P. R. of China
| |
Collapse
|
7
|
Chen SQ, Li XR, Li CJ, Fan J, Liu ZW, Shi XY. Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Org Lett 2020; 22:1259-1264. [DOI: 10.1021/acs.orglett.9b04433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
8
|
Alharis RA, McMullin CL, Davies DL, Singh K, Macgregor SA. Understanding electronic effects on carboxylate-assisted C-H activation at ruthenium: the importance of kinetic and thermodynamic control. Faraday Discuss 2019; 220:386-403. [PMID: 31528900 DOI: 10.1039/c9fd00063a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Meta- and para-substituted 1-phenylpyrazoles (R-phpyz-H) react with [RuCl2(p-cymene)]2 in the presence of NaOAc to form cyclometallated complexes [M(R-phpyz)Cl(p-cymene)] (where R = NMe2, OMe, Me, H, F, CF3 and NO2). Experimental and DFT studies indicate that product formation can be reversible or irreversible depending on the substituents and the reaction conditions. Competition experiments show that the kinetic selectivity favours electron-donating substituents and correlate well with the Hammett parameter, giving a negative slope (ρ = -2.4) that is consistent with a cationic transition state. However, surprisingly, the thermodynamic selectivity is completely opposite, with substrates featuring electron-withdrawing groups being favoured. These trends are reproduced with DFT calculations that locate a rate-limiting transition state dominated by Ru-O bond dissociation and minimal C-H bond elongation. Detailed computational analysis of these transition states shows that C-H activation proceeds by an AMLA/CMD mechanism through a synergic combination of a C-H→Ru agostic interaction and C-HO H-bonding. NBO calculations also highlight a syndetic bonding term, and the relative weights of these three components vary in a complementary fashion depending on the nature of the substituent. With meta-substituted ligands H/D exchange experiments signal kinetically accessible ortho-C-H activation when R = NMe2, OMe and Me. This is also modelled computationally and the calculations highlight the kinetic relevance of the HOAc/Cl exchange that occurs post C-H bond cleavage, in particular with the bulkier NMe2 and Me substituents. Our study highlights that the experimental substituent effects are dependent on the reaction conditions and so using such studies to assign the mechanism of C-H activation in either stoichiometric or catalytic reactions may be misleading.
Collapse
Affiliation(s)
- Raed A Alharis
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | | | | | | | |
Collapse
|
9
|
Zhang L, Jiang B, Chen Y, Lv JF, Feng WC. A Computational Study on the Reaction Mechanisms of Nickel-Catalyzed Diarylation of Alkenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lei Zhang
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| | - Bo Jiang
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| | - Yu Chen
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
- Department of Chemistry; School of Science; Tianjin University; 300354 Tianjin P. R. China
| | - Jia-Fei Lv
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| | - Wen-Chao Feng
- School of Science; Tianjin Chengjian University; 300384 Tianjin P. R. China
| |
Collapse
|
10
|
Fan X, Jiang YY, Zhu L, Zhang Q, Bi S. Mechanism and Origin of Stereoselectivity of Pd-Catalyzed Cascade Annulation of Aryl Halide, Alkene, and Carbon Monoxide via C–H Activation. J Org Chem 2019; 84:4353-4362. [DOI: 10.1021/acs.joc.9b00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ling Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
11
|
Hong H, Zhang L, Xie F, Zhuang R, Jiang D, Liu H, Li J, Yang H, Zhang X, Nie L, Li Z. Rapid one-step 18F-radiolabeling of biomolecules in aqueous media by organophosphine fluoride acceptors. Nat Commun 2019; 10:989. [PMID: 30824691 PMCID: PMC6397219 DOI: 10.1038/s41467-019-08953-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Currently, only a few 18F-radiolabeling methods were conducted in aqueous media, with non-macroelement fluoride acceptors and stringent conditions required. Herein, we describe a one-step non-solvent-biased, room-temperature-driven 18F-radiolabeling methodology based on organophosphine fluoride acceptors. The high water tolerance for this isotope-exchange-based 18F-labeling method is attributed to the kinetic and thermodynamic preference of F/F over the OH/F substitution based on computational calculations and experimental validation. Compact [18/19F]di-tert-butyl-organofluorophosphine and its derivatives used as 18F-labeling synthons exhibit excellent stability in vivo. The synthons are further conjugated to several biomolecular ligands such as c(RGDyk) and human serum albumin. The one-step labeled biomolecular tracers demonstrate intrinsic target imaging ability and negligible defluorination in vivo. The current method thus offers a facile and efficient 18F-radiolabeling pathway, enabling further widespread application of 18F. The synthesis of 18F-labeled positron emission tomography (PET) tracers is difficult and typically requires anhydrous conditions. Here, the authors developed organophosphine precursors that allow for quick, high-yield synthesis of 18F-labeled probes in either organic solvents or aqueous media.
Collapse
Affiliation(s)
- Huawei Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, 300384, Tianjin, China
| | - Fang Xie
- PET center, Huashan Hospital, Fudan University, 200235, Shanghai, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
| | - Donglang Jiang
- PET center, Huashan Hospital, Fudan University, 200235, Shanghai, China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
| | - Hongzhang Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|