1
|
Wang S, Allmendinger L, Huc I. Abiotic Foldamer Quaternary Structures. Angew Chem Int Ed Engl 2024:e202413252. [PMID: 39230977 DOI: 10.1002/anie.202413252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Abiotic aromatic foldamer sequences have been previously shown to fold in helix-turn-helix motifs in organic solvents. Using simple computational tools, a new helix-turn-helix motif was designed that bears additional hydrogen bond donor OH groups to promote its aggregation into a genuine, trimeric, abiotic quaternary structure. This sequence was synthesized and its self-assembly in solution was investigated by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Molecular Dynamics (MD) simulations. The existence of two stable discrete aggregates was evidenced, one assigned to the initially designed trimer, the other to a dimer including multiple water molecules. The two species may be quantitatively interconverted upon changing the water content of the solution or the temperature. These results represent important steps in the design of protein-like abiotic architectures.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
2
|
Wang S, Wicher B, Douat C, Maurizot V, Huc I. Domain Swapping in Abiotic Foldamers. Angew Chem Int Ed Engl 2024; 63:e202405091. [PMID: 38661252 DOI: 10.1002/anie.202405091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Foldamer sequences that adopt tertiary helix-turn-helix folds mediated by helix-helix hydrogen bonding in organic solvents have been previously reported. In an attempt to create genuine abiotic quaternary structures, i.e. assemblies of tertiary structures, new sequences were prepared that possess additional hydrogen bond donors at positions that may promote an association between the tertiary folds. However, a solid state structure and extensive solution state investigations by Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) show that, instead of forming a quaternary structure, the tertiary folds assemble into stable domain-swapped dimer motifs. Domain swapping entails a complete reorganization of the arrays of hydrogen bonds and changes in relative helix orientation and handedness that can all be rationalized.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznan, Poland
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2, Rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
3
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Dengler S, Howard RT, Morozov V, Tsiamantas C, Huang WE, Liu Z, Dobrzanski C, Pophristic V, Brameyer S, Douat C, Suga H, Huc I. Display Selection of a Hybrid Foldamer-Peptide Macrocycle. Angew Chem Int Ed Engl 2023; 62:e202308408. [PMID: 37707879 DOI: 10.1002/anie.202308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer-peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Ryan T Howard
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Vasily Morozov
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Christos Tsiamantas
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Wei-En Huang
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Christopher Dobrzanski
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Vojislava Pophristic
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Sophie Brameyer
- Biozentrum, Microbiology, Ludwig-Maximilians-Universität, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
5
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
6
|
Bindl D, Mandal PK, Huc I. Generalizing the Aromatic δ‐Amino Acid Foldamer Helix. Chemistry 2022; 28:e202200538. [PMID: 35332956 PMCID: PMC9322652 DOI: 10.1002/chem.202200538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/12/2022]
Abstract
A series of aromatic oligoamide foldamer sequences containing different proportions of three δ‐amino acids derived from quinoline, pyridine, and benzene and possessing varying flexibility, for example due to methylene bridges, were synthesized. Crystallographic structures of two key sequences and 1H NMR data in water concur to show that a canonical aromatic helix fold prevails in almost all cases and that helix stability critically depends on the ratio between rigid and flexible units. Notwithstanding subtle variations of curvature, i. e. the numbers of units per turn, the aromatic δ‐peptide helix is therefore shown to be general and tolerant of a great number of sp3 centers. We also demonstrate canonical helical folding upon alternating two monomers that do not promote folding when taken separately: folding occurs with two methylenes between every other unit, not with one methylene between every unit. These findings highlight that a fine‐tuning of helix handedness inversion kinetics, curvature, and side chain positioning in aromatic δ‐peptidic foldamers can be realized by systematically combining different yet compatible δ‐amino acids.
Collapse
Affiliation(s)
- Daniel Bindl
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 München 81377 Germany
| | - Pradeep K. Mandal
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 München 81377 Germany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 München 81377 Germany
| |
Collapse
|
7
|
Bindl D, Mandal PK, Allmendinger L, Huc I. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Angew Chem Int Ed Engl 2021; 61:e202116509. [PMID: 34962351 PMCID: PMC9305948 DOI: 10.1002/anie.202116509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/03/2022]
Abstract
Tight binding was observed between the C‐terminal cross section of aromatic oligoamide helices in aqueous solution, leading to the formation of discrete head‐to‐head dimers in slow exchange on the NMR timescale with the corresponding monomers. The nature and structure of the dimers was evidenced by 2D NOESY and DOSY spectroscopy, mass spectrometry and X‐ray crystallography. The binding interface involves a large hydrophobic aromatic surface and hydrogen bonding. Dimerization requires that helices have the same handedness and the presence of a C‐terminal carboxy function. The protonation state of the carboxy group plays a crucial role, resulting in pH dependence of the association. Dimerization is also influenced by neighboring side chains and can be programmed to selectively produce heteromeric aggregates.
Collapse
Affiliation(s)
- Daniel Bindl
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Pradeep K Mandal
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Lars Allmendinger
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen, Pharmacy, Butenandtstraße 5 - 13, 81377, Munich, GERMANY
| |
Collapse
|
8
|
Bindl D, Mandal PK, Allmendinger L, Huc I. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Bindl
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Pradeep K. Mandal
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Lars Allmendinger
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen Pharmacy Butenandtstraße 5 - 13 81377 Munich GERMANY
| |
Collapse
|
9
|
Dengler S, Mandal PK, Allmendinger L, Douat C, Huc I. Conformational interplay in hybrid peptide-helical aromatic foldamer macrocycles. Chem Sci 2021; 12:11004-11012. [PMID: 34522297 PMCID: PMC8386670 DOI: 10.1039/d1sc03640h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Macrocyclic peptides are an important class of bioactive substances. When inserting an aromatic foldamer segment in a macrocyclic peptide, the strong folding propensity of the former may influence the conformation and alter the properties of the latter. Such an insertion is relevant because some foldamer-peptide hybrids have recently been shown to be tolerated by the ribosome, prior to forming macrocycles, and can thus be produced using an in vitro translation system. We have investigated the interplay of peptide and foldamer conformations in such hybrid macrocycles. We show that foldamer helical folding always prevails and stands as a viable means to stretch, i.e. unfold, peptides in a solvent dependent manner. Conversely, the peptide systematically has a reciprocal influence and gives rise to strong foldamer helix handedness bias as well as foldamer helix stabilisation. The hybrid macrocycles also show resistance towards proteolytic degradation.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Pradeep K Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Lars Allmendinger
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| |
Collapse
|
10
|
Bindl D, Heinemann E, Mandal PK, Huc I. Quantitative helix handedness bias through a single H vs. CH 3 stereochemical differentiation. Chem Commun (Camb) 2021; 57:5662-5665. [PMID: 33972976 DOI: 10.1039/d1cc01452h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel chiral aromatic δ-amino acid building block was shown to fully induce handedness in quinoline oligoamide foldamers with the possibility of further increasing the bias by combining multiples of these units in the same sequence. Through its incorporation within the helix, both N- and C-termini are still accessible for further functionalisation.
Collapse
Affiliation(s)
- Daniel Bindl
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, München 81377, Germany.
| | - Elisabeth Heinemann
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, München 81377, Germany.
| | - Pradeep K Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, München 81377, Germany.
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, München 81377, Germany.
| |
Collapse
|
11
|
Seedorf T, Kirschning A, Solga D. Natural and Synthetic Oligoarylamides: Privileged Structures for Medical Applications. Chemistry 2021; 27:7321-7339. [PMID: 33481284 PMCID: PMC8251530 DOI: 10.1002/chem.202005086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
The term "privileged structure" refers to a single molecular substructure or scaffold that can serve as a starting point for high-affinity ligands for more than one receptor type. In this report, a hitherto overlooked group of privileged substructures is addressed, namely aromatic oligoamides, for which there are natural models in the form of cystobactamids, albicidin, distamycin A, netropsin, and others. The aromatic and heteroaromatic core, together with a flexible selection of substituents, form conformationally well-defined scaffolds capable of specifically binding to conformationally well-defined regions of biomacromolecules such as helices in proteins or DNA often by acting as helices mimics themselves. As such, these aromatic oligoamides have already been employed to inhibit protein-protein and nucleic acid-protein interactions. This article is the first to bring together the scattered knowledge about aromatic oligoamides in connection with biomedical applications.
Collapse
Affiliation(s)
- Tim Seedorf
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Danny Solga
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
12
|
Mbianda J, Bakail M, André C, Moal G, Perrin ME, Pinna G, Guerois R, Becher F, Legrand P, Traoré S, Douat C, Guichard G, Ochsenbein F. Optimal anchoring of a foldamer inhibitor of ASF1 histone chaperone through backbone plasticity. SCIENCE ADVANCES 2021; 7:7/12/eabd9153. [PMID: 33741589 PMCID: PMC7978421 DOI: 10.1126/sciadv.abd9153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 05/08/2023]
Abstract
Sequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may notably contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a notable plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with nonpeptide oligourea segments is the resistance to proteolysis in human plasma, which was highly improved compared to the cognate α-helical peptide.
Collapse
Affiliation(s)
- Johanne Mbianda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - May Bakail
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christophe André
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gwenaëlle Moal
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie E Perrin
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Guillaume Pinna
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaël Guerois
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Francois Becher
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F91190 Gif-sur-Yvette, France
| | - Seydou Traoré
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Douat
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France.
| | - Françoise Ochsenbein
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France.
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
13
|
Aksakal R, Mertens C, Soete M, Badi N, Du Prez F. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004038. [PMID: 33747749 PMCID: PMC7967060 DOI: 10.1002/advs.202004038] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Indexed: 05/19/2023]
Abstract
In the last decade, the field of sequence-defined polymers and related ultraprecise, monodisperse synthetic macromolecules has grown exponentially. In the early stage, mainly articles or reviews dedicated to the development of synthetic routes toward their preparation have been published. Nowadays, those synthetic methodologies, combined with the elucidation of the structure-property relationships, allow envisioning many promising applications. Consequently, in the past 3 years, application-oriented papers based on discrete synthetic macromolecules emerged. Hence, material science applications such as macromolecular data storage and encryption, self-assembly of discrete structures and foldamers have been the object of many fascinating studies. Moreover, in the area of life sciences, such structures have also been the focus of numerous research studies. Here, it is aimed to highlight these recent applications and to give the reader a critical overview of the future trends in this area of research.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Chiel Mertens
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Matthieu Soete
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Nezha Badi
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Filip Du Prez
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| |
Collapse
|
14
|
Zwillinger M, Reddy PS, Wicher B, Mandal PK, Csékei M, Fischer L, Kotschy A, Huc I. Aromatic Foldamer Helices as α-Helix Extended Surface Mimetics. Chemistry 2020; 26:17366-17370. [PMID: 32910480 PMCID: PMC7839445 DOI: 10.1002/chem.202004064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityBudapestHungary
| | - Post Sai Reddy
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660780PoznanPoland
| | - Pradeep K. Mandal
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Márton Csékei
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Lucile Fischer
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
| | - András Kotschy
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
15
|
Tsiamantas C, Kwon S, Rogers JM, Douat C, Huc I, Suga H. Ribosomal Incorporation of Aromatic Oligoamides as Peptide Sidechain Appendages. Angew Chem Int Ed Engl 2020; 59:4860-4864. [PMID: 31894626 PMCID: PMC7496375 DOI: 10.1002/anie.201914654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/24/2019] [Indexed: 01/06/2023]
Abstract
Derivatives of 4-aminomethyl-l-phenylalanine with aromatic oligoamide foldamers as sidechain appendages were successfully charged on tRNA by means of flexizymes. Their subsequent incorporation both at the C-terminus of, and within, peptide sequences by the ribosome, was demonstrated. These results expand the registry of chemical structures tolerated by the ribosome to sidechains significantly larger and more structurally defined than previously demonstrated.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of ChemistrySchool of ScienceThe University of Tokyo7-3-1 HongoBunkyoTokyo113-0033Japan
| | - Sunbum Kwon
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
- Department of ChemistryChung-Ang University84 Heukseok-roDongjak-guSeoul06974Republic of Korea
| | - Joseph M. Rogers
- Department of ChemistrySchool of ScienceThe University of Tokyo7-3-1 HongoBunkyoTokyo113-0033Japan
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo7-3-1 HongoBunkyoTokyo113-0033Japan
| |
Collapse
|
16
|
Tsiamantas C, Kwon S, Rogers JM, Douat C, Huc I, Suga H. Ribosomal Incorporation of Aromatic Oligoamides as Peptide Sidechain Appendages. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christos Tsiamantas
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Sunbum Kwon
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
- Department of ChemistryChung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| | - Joseph M. Rogers
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| |
Collapse
|
17
|
Mazzier D, De S, Wicher B, Maurizot V, Huc I. Parallele homochirale und antiparallele heterochirale Wasserstoffbrücken‐Interaktionsflächen in multihelikalen abiotischen Foldameren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Mazzier
- Department of Pharmacy and Centre for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 81377 Munich Deutschland
- CBMN Laboratory Université de Bordeaux CNRS, IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac Frankreich
| | - Soumen De
- CBMN Laboratory Université de Bordeaux CNRS, IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac Frankreich
| | - Barbara Wicher
- Department of Chemical Technology of Drugs Poznan University of Medical Sciences Grunwaldzka 6 60–780 Poznan Polen
| | - Victor Maurizot
- CBMN Laboratory Université de Bordeaux CNRS, IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac Frankreich
| | - Ivan Huc
- Department of Pharmacy and Centre for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 81377 Munich Deutschland
- CBMN Laboratory Université de Bordeaux CNRS, IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac Frankreich
| |
Collapse
|
18
|
Mazzier D, De S, Wicher B, Maurizot V, Huc I. Parallel Homochiral and Anti-Parallel Heterochiral Hydrogen-Bonding Interfaces in Multi-Helical Abiotic Foldamers. Angew Chem Int Ed Engl 2020; 59:1606-1610. [PMID: 31671236 PMCID: PMC7004161 DOI: 10.1002/anie.201912805] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 11/25/2022]
Abstract
A hydrogen-bonding interface between helical aromatic oligoamide foldamers has been designed to promote the folding of a helix-turn-helix motif with a head-to-tail arrangement of two helices of opposite handedness. This design complements an earlier helix-turn-helix motif with a head-to-head arrangement of two helices of identical handedness interface. The two motifs were shown to have comparable stability and were combined in a unimolecular tetra-helix fold constituting the largest abiotic tertiary structure to date.
Collapse
Affiliation(s)
- Daniela Mazzier
- Department of Pharmacy and Centre for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MunichGermany
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Soumen De
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660–780PoznanPoland
| | - Victor Maurizot
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- Department of Pharmacy and Centre for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MunichGermany
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| |
Collapse
|
19
|
Dobscha JR, Castillo HD, Li Y, Fadler RE, Taylor RD, Brown AA, Trainor CQ, Tait SL, Flood AH. Sequence-Defined Macrocycles for Understanding and Controlling the Build-up of Hierarchical Order in Self-Assembled 2D Arrays. J Am Chem Soc 2019; 141:17588-17600. [PMID: 31503483 PMCID: PMC7461245 DOI: 10.1021/jacs.9b06410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anfinsen's dogma that sequence dictates structure is fundamental to understanding the activity and assembly of proteins. This idea has been applied to all manner of oligomers but not to the behavior of cyclic oligomers, aka macrocycles. We do this here by providing the first proofs that sequence controls the hierarchical assembly of nonbiological macrocycles, in this case, at graphite surfaces. To design macrocycles with one (AAA), two (AAB), or three (ABC) different carbazole units, we needed to subvert the synthetic preferences for one-pot macrocyclizations. We developed a new stepwise synthesis with sequence-defined targets made in 11, 17, and 22 steps with 25, 10, and 5% yields, respectively. The linear build up of primary sequence (1°) also enabled a thermal Huisgen cycloaddition to proceed regioselectively for the first time using geometric control. The resulting macrocycles are planar (2° structure) and form H-bonded dimers (3°) at surfaces. Primary sequences encoded into the suite of tricarb macrocycles were shown by scanning-tunneling microscopy (STM) to impact the next levels of supramolecular ordering (4°) and 2D crystalline polymorphs (5°) at solution-graphite interfaces. STM imaging of an AAB macrocycle revealed the formation of a new gap phase that was inaccessible using only C3-symmetric macrocycles. STM imaging of two additional sequence-controlled macrocycles (AAD, ABE) allowed us to identify the factors driving the formation of this new polymorph. This demonstration of how sequence controls the hierarchical patterning of macrocycles raises the importance of stepwise syntheses relative to one-pot macrocyclizations to offer new approaches for greater understanding and control of hierarchical assembly.
Collapse
Affiliation(s)
- James R. Dobscha
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Henry D. Castillo
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yan Li
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Rachel E. Fadler
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Rose D. Taylor
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Andrew A. Brown
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Colleen Q. Trainor
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Steven L. Tait
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Mazzier D, De S, Wicher B, Maurizot V, Huc I. Interplay of secondary and tertiary folding in abiotic foldamers. Chem Sci 2019; 10:6984-6991. [PMID: 31588265 PMCID: PMC6676331 DOI: 10.1039/c9sc01322a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/08/2019] [Indexed: 12/30/2022] Open
Abstract
The first true abiotic tertiary folded structures, i.e. at the exclusion of any aliphatic amino acid, have recently been introduced under the form of aromatic oligoamide helix-turn-helix foldamers stabilized by hydrogen bonds in organic solvents. We present an investigation of the interplay of secondary and tertiary folding and of some cooperative effects in these systems. A solid phase synthesis approach to the preparation of these sequences was developed to facilitate systematic variation. Flexible pyridine-based units were introduced in various proportions in replacement of more rigid quinoline-based units. Conformational behaviour was assessed in solution by NMR, in the solid state by X-ray crystallography, and computationally through molecular dynamics simulations. Altogether, our results demonstrate that tertiary folding stabilizes otherwise flexible secondary structures, and that the disruption of tertiary folds upon adding polar solvents follows different mechanisms depending on whether secondary structures are inherently stable or not. These findings constitute a solid basis on which to further increase the size and complexity of abiotic folded structures and to eventually orchestrate folding dynamics and responsiveness.
Collapse
Affiliation(s)
- Daniela Mazzier
- Department of Pharmacy , Centre for Integrated Protein Science , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 Munich , Germany .
- CBMN Laboratory , Université de Bordeaux , CNRS , IPB , Institut Européen de Chimie et Biologie , 2 rue Escarpit , 33600 Pessac , France
| | - Soumen De
- CBMN Laboratory , Université de Bordeaux , CNRS , IPB , Institut Européen de Chimie et Biologie , 2 rue Escarpit , 33600 Pessac , France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs , Poznan University of Medical Sciences , Grunwaldzka 6 , 60-780 Poznan , Poland
| | - Victor Maurizot
- CBMN Laboratory , Université de Bordeaux , CNRS , IPB , Institut Européen de Chimie et Biologie , 2 rue Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Department of Pharmacy , Centre for Integrated Protein Science , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 Munich , Germany .
- CBMN Laboratory , Université de Bordeaux , CNRS , IPB , Institut Européen de Chimie et Biologie , 2 rue Escarpit , 33600 Pessac , France
| |
Collapse
|
21
|
Reddy PS, Langlois d'Estaintot B, Granier T, Mackereth CD, Fischer L, Huc I. Structure Elucidation of Helical Aromatic Foldamer-Protein Complexes with Large Contact Surface Areas. Chemistry 2019; 25:11042-11047. [PMID: 31257622 DOI: 10.1002/chem.201902942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 01/12/2023]
Abstract
The development of large synthetic ligands could be useful to target the sizeable surface areas involved in protein-protein interactions. Herein, we present long helical aromatic oligoamide foldamers bearing proteinogenic side chains that cover up to 450 Å2 of the human carbonic anhydrase II (HCA) surface. The foldamers are composed of aminoquinolinecarboxylic acids bearing proteinogenic side chains and of more flexible aminomethyl-pyridinecarboxylic acids that enhance helix handedness dynamics. Crystal structures of HCA-foldamer complexes were obtained with a 9- and a 14-mer both showing extensive protein-foldamer hydrophobic contacts. In addition, foldamer-foldamer interactions seem to be prevalent in the crystal packing, leading to the peculiar formation of an HCA superhelix wound around a rod of stacked foldamers. Solution studies confirm the positioning of the foldamer at the protein surface as well as a dimerization of the complexes.
Collapse
Affiliation(s)
- Post Sai Reddy
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Béatrice Langlois d'Estaintot
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Thierry Granier
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Cameron D Mackereth
- ARNA (U1212), Univ. Bordeaux-INSERM-CNRS, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Lucile Fischer
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,Department Pharmazie and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
22
|
Vallade M, Jewginski M, Fischer L, Buratto J, Bathany K, Schmitter JM, Stupfel M, Godde F, Mackereth CD, Huc I. Assessing Interactions between Helical Aromatic Oligoamide Foldamers and Protein Surfaces: A Tethering Approach. Bioconjug Chem 2019; 30:54-62. [PMID: 30395443 DOI: 10.1021/acs.bioconjchem.8b00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helically folded aromatic foldamers may constitute suitable candidates for the ab initio design of ligands for protein surfaces. As preliminary steps toward the exploration of this hypothesis, a tethering approach was developed to detect interactions between a protein and a foldamer by confining the former at the surface of the latter. Cysteine mutants of two therapeutically relevant enzymes, CypA and IL4, were produced. Two series of ten foldamers were synthesized bearing different proteinogenic side chains and either a long or a short linker functionalized with an activated disulfide. Disulfide exchange between the mutated cysteines and the activated disulfides yielded 20 foldamer-IL4 and 20 foldamer-CypA adducts. Effectiveness of the reaction was demonstrated by LC-MS, by MS analysis after proteolytic digestion, and by 2D NMR. Circular dichroism then revealed diastereoselective interactions between the proteins and the foldamers confined at their surface which resulted in a preferred handedness of the foldamer helix. Helix sense bias occurred sometimes with both the short and the long linkers and sometimes with only one of them. In a few cases, helix handedness preference is found to be close to quantitative. These cases constitute valid candidates for structural elucidation of the interactions involved.
Collapse
Affiliation(s)
- Maëlle Vallade
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Michal Jewginski
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department of Bioorganic Chemistry, Faculty of Chemistry , Wrocław University of Technology , 50-370 Wrocław , Poland
| | - Lucile Fischer
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jérémie Buratto
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Katell Bathany
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jean-Marie Schmitter
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Marine Stupfel
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Frédéric Godde
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Cameron D Mackereth
- Université Bordeaux, INSERM, CNRS, ARNA (U 1212 and UMR 5320), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| |
Collapse
|
23
|
Alex JM, Corvaglia V, Hu X, Engilberge S, Huc I, Crowley PB. Crystal structure of a protein–aromatic foldamer composite: macromolecular chiral resolution. Chem Commun (Camb) 2019; 55:11087-11090. [DOI: 10.1039/c9cc05330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protein–foldamer crystal structure illustrates protein assembly by a sulfonated aromatic oligoamide, and chiral resolution of the foldamer helix handedness.
Collapse
Affiliation(s)
- Jimi M. Alex
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Valentina Corvaglia
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | - Xiaobo Hu
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | | - Ivan Huc
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | |
Collapse
|