1
|
Cheng YY, Kuo TS, Wu PY, Hsieh JC, Wu HL. Rhodium(I)/Chiral Diene Complexes Catalyzed Asymmetric Desymmetrization of Alkynyl-Tethered 2,5-Cyclohexadienones Through an Arylative Cyclization Cascade. J Org Chem 2024; 89:4861-4876. [PMID: 38525772 DOI: 10.1021/acs.joc.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cis-hydrobenzofurans, cis-hydroindoles, and cis-hydrindanes, privileged structural motifs found in numerous biologically active natural and synthetic compounds, are efficiently prepared by a Rh(I)-catalyzed cascade syn-arylation/1,4-addition protocol. This approach starts with the regioselective syn-arylation of the alkyne tethered to 2,5-hexadienone moieties, using a chiral Rh(I) catalyst generated in situ from a chiral bicyclo[2.2.1]hepatadiene ligand L4f. By forging two new carbon-carbon bonds and introducing two chiral centers, the resulting alkenylrhodium species undergoes desymmetrization via an intramolecular 1,4-addition reaction, delivering annulated products with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co. Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
2
|
Yuan WC, Zeng HY, Zhang YP, Zhao JQ, You Y, Yin JQ, Zhou MQ, Wang ZH. Synthesis of Benzofuro[3,2- b]indol-3-one Derivatives via Dearomative (3 + 2) Cycloaddition of 2-Nitrobenzofurans and para-Quinamines. Molecules 2024; 29:1163. [PMID: 38474676 DOI: 10.3390/molecules29051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
An efficient dearomative (3 + 2) cycloaddition of para-quinamines and 2-nitrobenzofurans has been developed. This reaction proceeds smoothly under mild conditions and affords a series of benzofuro[3,2-b]indol-3-one derivatives in good to excellent yields (up to 98%) with perfect diastereoselectivities (all cases > 20:1 dr). The scale-up synthesis and versatile derivatizations demonstrate the potential synthetic application of the protocol. A plausible reaction mechanism is also proposed to account for the observed reaction process. This work represents the first instance of the N-triggered dearomative (3 + 2) cycloaddition of 2-nitrobenzofurans.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hai-Ying Zeng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun-Qing Yin
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- China National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Barnes L, Birkinshaw TN, Senior AJ, Brügge OS, Lewis W, Argent SP, Moody CJ, Nortcliffe A. Iodoetherification as a strategy towards sp 3-rich scaffolds for drug discovery. Bioorg Med Chem 2024; 101:117636. [PMID: 38354458 DOI: 10.1016/j.bmc.2024.117636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Functionalised tetrahydropyran and spirooxepane scaffolds were prepared utilising an iodoetherification strategy and elaborated to demonstrate their potential use in library synthesis. The iodoetherification products could be readily transformed to the corresponding azides that could be further functionalised via copper-catalysed azide-alkyne cycloaddition or reduction to the amine. The lead-likeness and three-dimensionality of the scaffolds were examined and compared to commercial libraries.
Collapse
Affiliation(s)
- Lydia Barnes
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Timothy N Birkinshaw
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aaron J Senior
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Oscar Siles Brügge
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Christopher J Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrew Nortcliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
4
|
Doi T, Umedera K, Miura K, Morita T, Nakamura H. Synthesis of the diazatricycloundecane scaffold via gold(I)-catalysed Conia-ene-type 5- exo-dig cyclization and stepwise substituent assembly for the construction of an sp 3-rich compound library. Org Biomol Chem 2023; 21:8716-8726. [PMID: 37869769 DOI: 10.1039/d3ob01534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The bridged diazatricycloundecane sp3-rich scaffold was synthesised via the gold(I)-catalysed Conia-ene reaction. The electron-donating property of the siloxymethyl group on alkyne 1 enabled 6-endo-dig cyclization, whereas the ethoxy carbonyl group on alkyne 4 led to 5-exo-dig cyclization with complete regioselectivity in the Conia-ene reaction. The resulting bridged diazatricycloundecane scaffold 5 allowed the construction of a library of sp3-rich compounds. Among the compounds synthesised, compounds 6e and 6f inhibited the hypoxia inducible factor 1 (HIF-1) downstream signaling pathway without affecting HIF-1α mRNA expression.
Collapse
Affiliation(s)
- Tomoya Doi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
| | - Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
| | - Kazuki Miura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Taiki Morita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
5
|
Sánchez-Roselló M, Escolano M, Gaviña D, Del Pozo C. Two Decades of Progress in the Asymmetric Intramolecular aza-Michael Reaction. CHEM REC 2021; 22:e202100161. [PMID: 34415097 DOI: 10.1002/tcr.202100161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The asymmetric intramolecular aza-Michael reaction (IMAMR) is a very convenient strategy for the generation of heterocycles bearing nitrogen-substituted stereocenters. Due to the ubiquitous presence of these skeletons in natural products, the IMAMR has found widespread applications in the total synthesis of alkaloids and biologically relevant compounds. The development of asymmetric versions of the IMAMR are quite recent, most of them reported in this century. The fundamental advances in this field involve the use of organocatalysts. Chiral imidazolidinones, diaryl prolinol derivatives, Cinchone-derived primary amines and quaternary ammonium salts, and BINOL-derived phosphoric acids account for the success of those methodologies. Moreover, the use of N-sulfinyl imines with a dual role, as nitrogen nucleophiles and as chiral auxiliaries, appeared as a versatile mode of performing the asymmetric IMAMR.
Collapse
Affiliation(s)
- María Sánchez-Roselló
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Marcos Escolano
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Daniel Gaviña
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Carlos Del Pozo
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| |
Collapse
|
6
|
Abstract
It is well established that medicinal chemists should depart from the flat, sp2-dominated nature of traditional drugs and incorporate complexities of bioactive natural products, such as sp3-richness, 3D topology and chirality. There is a gray area, however, in the relevance of newly developed chemical scaffolds that exhibit these complexities but do not correlate to anything observed in nature. This can leave synthetic methodologists searching for structural similarities between their newly developed products and known natural products in search of justification. This article offers a perspective on how these types of complex 'abiotic' scaffolds can be appreciated purely on the basis of their structural novelty, and identifies the unique advantages arising when a complex chemical entity unrecognized by nature is introduced to biological systems.
Collapse
|