1
|
Nakamura S, Yasuo N, Sekijima M. Molecular optimization using a conditional transformer for reaction-aware compound exploration with reinforcement learning. Commun Chem 2025; 8:40. [PMID: 39922979 DOI: 10.1038/s42004-025-01437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Designing molecules with desirable properties is a critical endeavor in drug discovery. Because of recent advances in deep learning, molecular generative models have been developed. However, the existing compound exploration models often disregard the important issue of ensuring the feasibility of organic synthesis. To address this issue, we propose TRACER, which is a framework that integrates the optimization of molecular property optimization with synthetic pathway generation. The model can predict the product derived from a given reactant via a conditional transformer under the constraints of a reaction type. The molecular optimization results of an activity prediction model targeting DRD2, AKT1, and CXCR4 revealed that TRACER effectively generated compounds with high scores. The transformer model, which recognizes the entire structures, captures the complexity of the organic synthesis and enables its navigation in a vast chemical space while considering real-world reactivity constraints.
Collapse
Affiliation(s)
- Shogo Nakamura
- Department of Life Science and Technology, Institute of Science Tokyo, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | - Nobuaki Yasuo
- Academy for Convergence of Materials and Informatics (TAC-MI), Institute of Science Tokyo, S6-23, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan
| | - Masakazu Sekijima
- Department Computer Science, Institute of Science Tokyo, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan.
| |
Collapse
|
2
|
Jin L, Zeng X, Li S, Qiu G, Liu P. Copper‐Catalyzed Regioselective Halogenation of Anilides with N‐Fluorobenzenesulfonimide. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianwen Jin
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Xiaoli Zeng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Siyang Li
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Guofu Qiu
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Peng Liu
- Wuhan University School of Pharmaceutical Sciences donghu road 185 430071 Wuhan CHINA
| |
Collapse
|
3
|
Visible-Light-Induced Catalytic Selective Halogenation with Photocatalyst. Molecules 2021; 26:molecules26237380. [PMID: 34885962 PMCID: PMC8659127 DOI: 10.3390/molecules26237380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Halide moieties are essential structures of compounds in organic chemistry due to their popularity and wide applications in many fields such as natural compounds, agrochemicals, and pharmaceuticals. Thus, many methods have been developed to introduce halides into various organic molecules. Recently, visible-light-driven reactions have emerged as useful methods of organic synthesis. Particularly, halogenation strategies using visible light have significantly improved the reaction efficiency and reduced toxicity, as well as promoted reactions under mild conditions. In this review, we have summarized recent studies in visible-light-mediated halogenation (chlorination, bromination, and iodination) with photocatalysts.
Collapse
|
4
|
Copper/manganese oxide catalyzed regioselective amination of quinoline N-oxides: An example of synergistic cooperative catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Sahoo T, Sarkar S, Ghosh SC. Copper(II) mediated C-8 amination of 1-naphthylamide derivatives with acyclic and cyclic amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Singh H, Sen C, Suresh E, Panda AB, Ghosh SC. C-H Amidation and Amination of Arenes and Heteroarenes with Amide and Amine using Cu-MnO as a Reusable Catalyst under Mild Conditions. J Org Chem 2021; 86:3261-3275. [PMID: 33522804 DOI: 10.1021/acs.joc.0c02603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An atom-economical and efficient route for the direct amidation and amination of aryl C-H bonds using our synthesized recyclable heterogeneous Cu-MnO catalyst is reported here. The direct C-H amidation was carried out using a simple amide without any preactivated coupling partner, and simple air was used as the sole oxidant. The reaction proceeds very smoothly with a broad range of substrates containing numerous functional groups in very good to excellent yields. Direct C-H aminations with a secondary amine were carried out under base-, ligand-, and external oxidant-free conditions in very good to excellent yields in very mild conditions. Both the amidation and amination can be scaled up on a gram scale with similar yields. The major advantage is that our catalyst is recyclable and reused several times without any significant loss of reactivity.
Collapse
Affiliation(s)
- Harshvardhan Singh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chiranjit Sen
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asit B Panda
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Subhash C Ghosh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Sen C, Sarvaiya B, Sarkar S, Ghosh SC. Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C-H Activation. J Org Chem 2020; 85:15287-15304. [PMID: 33141591 DOI: 10.1021/acs.joc.0c02120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A room-temperature C-H bond functionalization of benzamides has been developed by merging a photocatalyst with a cobalt catalyst for the synthesis of isoindolone spirosuccinimides. The reaction proceeds in aerobic conditions and does not require any sacrificial external oxidants such as Ag(I) or Mn(III) salts. Visible light activates the photocatalyst, and it acts as an electron-transfer reagent and helps in the fundamental organometallic steps by modulating the oxidation state of the cobalt complex. This C-H bond functionalization and spirocyclization showed wide substrate scope and good functional group tolerance. A possible reaction mechanism was proposed from the experimental outcome, showing that C-H bond activation is irreversible and not the rate-determining step.
Collapse
Affiliation(s)
- Chiranjit Sen
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavesh Sarvaiya
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Sarkar
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Remote C–H Functionalization of 8-Aminoquinoline Ring. Top Curr Chem (Cham) 2020; 378:42. [DOI: 10.1007/s41061-020-00303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
|
9
|
Jat JL, Verma S, Kumar P, Khatana AK, Chandra D, Yadav AK, Tiwari B. Zinc(II)-Catalyzed Synthesis of Secondary Amides from Ketones via Beckmann Rearrangement Using Hydroxylamine-O-sulfonic Acid in Aqueous Media. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A zinc(II)-catalyzed single-step protocol for the Beckmann rearrangement using hydroxylamine-O-sulfonic acid (HOSA) as the nitrogen source in water was developed. This direct method efficiently produces secondary amides under open atmosphere in a pure form after basic aqueous workup. It is environmentally benign and operationally simple.
Collapse
Affiliation(s)
- Jawahar L. Jat
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University)
| | - Saumya Verma
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University)
| | - Puneet Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University)
| | - Anil K. Khatana
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus
| | - Dinesh Chandra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University)
| | - Ajay K. Yadav
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University)
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus
| |
Collapse
|
10
|
Motati DR, Uredi D, Burra AG, Bowen JP, Fronczek FR, Smith CR, Watkins EB. Differential formation of nitrogen-centered radicals leading to unprecedented, regioselective bromination of N,N′-(1,2-phenylene)bisamides and 2-amidophenols. Org Chem Front 2020. [DOI: 10.1039/c9qo01508f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A highly efficient, site-selective, visible light-accelerated, remote C–H halogenation of unsymmetrical aromatic bisamides/amidoesters has been developed.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - Dilipkumar Uredi
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - Amarender Goud Burra
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Mercer University
- Atlanta
- USA
| | | | - Clint R. Smith
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - E. Blake Watkins
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| |
Collapse
|
11
|
Yang X, Yang QL, Wang XY, Xu HH, Mei TS, Huang Y, Fang P. Copper-Catalyzed Electrochemical Selective Bromination of 8-Aminoquinoline Amide Using NH4Br as the Brominating Reagent. J Org Chem 2019; 85:3497-3507. [DOI: 10.1021/acs.joc.9b03223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiang Yang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hao-Han Xu
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yan Huang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Sen C, Sahoo T, Singh H, Suresh E, Ghosh SC. Visible Light-Promoted Photocatalytic C-5 Carboxylation of 8-Aminoquinoline Amides and Sulfonamides via a Single Electron Transfer Pathway. J Org Chem 2019; 84:9869-9896. [PMID: 31307188 DOI: 10.1021/acs.joc.9b00942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient photocatalytic method was developed for the remote C5-H bond carboxylation of 8-aminoquinoline amide and sulfonamide derivatives. This methodology uses in situ generated •CBr3 radical as a carboxylation agent with alcohol and is further extended to a variety of arenes and heteroarenes to synthesize the desired carboxylated product in moderate-to-good yields. The reaction proceeding through a single electron transfer pathway was established by a control experiment, and a butylated hydroxytoluene-trapped aryl radical cation intermediate in high-resolution mass spectrometry was identified.
Collapse
|
13
|
Sahoo T, Sen C, Singh H, Suresh E, Ghosh SC. Copper‐Catalyzed C‐4 Carboxylation of 1‐Naphthylamide Derivatives with CBr
4
/MeOH. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tapan Sahoo
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Chiranjit Sen
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Harshvardhan Singh
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - E. Suresh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Analytical and Environmental Science Division and Centralized Instrument Facility CSIR-CSMCRI Bhavnagar 364002 Gujarat India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
14
|
Ma B, Lu F, Yang H, Gu X, Li Z, Li R, Pei H, Luo D, Zhang H, Lei A. Visible Light Mediated External Oxidant Free Selective C5 Bromination of 8‐Aminoquinoline Amides under Ambient Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bin Ma
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Fangling Lu
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Hongmei Yang
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Xin Gu
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Zhen Li
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Ru Li
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Hongqiao Pei
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Dan Luo
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, the Institute forAdvanced Studies (IAS)Wuhan University Wuhan, Hubei 430072 P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate SynthesisJiangxiNormal University Nanchang 330022, Jiangxi P. R. China
- College of Chemistry and Molecular Sciences, the Institute forAdvanced Studies (IAS)Wuhan University Wuhan, Hubei 430072 P. R. China
| |
Collapse
|
15
|
Shu Q, Li Y, Liu T, Zhang S, Jiang L, Jin K, Zhang R, Duan C. Visible light induced regioselective C5 halogenation of 8-aminoquinolines with 1,3-dihalo-5,5-dimethylhydantoin in continuous flow. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Zhu L, Le L, Yan M, Au CT, Qiu R, Kambe N. Carbon-Carbon Bond Formation of Trifluoroacetyl Amides with Grignard Reagents via C(O)-CF 3 Bond Cleavage. J Org Chem 2019; 84:5635-5644. [PMID: 30950272 DOI: 10.1021/acs.joc.9b00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reaction of trifluoroacetyl amides with Grignard reagent for the substitution of CF3 group with various alkyl or aryl groups is described. A variety of aryl, quinolin-8-yl, and (hetero)alkyl functional groups as well as F, Cl, and Br atoms are well tolerated. These moisture-stable and easily available trifluoroacetyl amides can be conveniently obtained and used as new versatile precursors for isocyanates. The control experiments show that the reaction proceeds via an isocyanate intermediate and/or alkoxide/amide dual anionic intermediate.
Collapse
Affiliation(s)
- Longzhi Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Mingpan Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering , Hunan Institute of Engineering , Xiangtan 411104 , P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China.,Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
17
|
Singh H, Sahoo T, Sen C, Galani SM, Ghosh SC. Aerobic oxidative alkynylation of H-phosphonates and amides: an efficient route for the synthesis of alkynylphosphonates and ynamides using a recyclable Cu–MnO catalyst. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00275h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We developed a straightforward, atom-economical and scalable route for the synthesis of alkynylphosphonates and ynamides using a reusable Cu–MnO catalyst.
Collapse
Affiliation(s)
- Harshvardhan Singh
- Natural Products and Green Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364002
- India
| | - Tapan Sahoo
- Natural Products and Green Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364002
- India
| | - Chiranjit Sen
- Natural Products and Green Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364002
- India
| | - Sunil M. Galani
- Natural Products and Green Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364002
- India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364002
- India
| |
Collapse
|