1
|
Du YD, Wang S, Du HW, Chang XY, Chen XY, Li YL, Shu W. Organophotocatalysed synthesis of 2-piperidinones in one step via [1 + 2 + 3] strategy. Nat Commun 2023; 14:5339. [PMID: 37660185 PMCID: PMC10475035 DOI: 10.1038/s41467-023-40197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/13/2023] [Indexed: 09/04/2023] Open
Abstract
Six-membered N-containing heterocycles, such as 2-piperidinone derivatives, with diverse substitution patterns are widespread in natural products, drug molecules and serve as key precursors for piperidines. Thus, the development of stereoselective synthesis of multi-substituted 2-piperidinones are attractive. However, existing methods heavily rely on modification of pre-synthesized backbones which require tedious multi-step procedure and suffer from limited substitution patterns. Herein, an organophotocatalysed [1 + 2 + 3] strategy was developed to enable the one-step access to diverse substituted 2-piperidinones from easily available inorganic ammonium salts, alkenes, and unsaturated carbonyl compounds. This mild protocol exhibits exclusive chemoselectivity over two alkenes, tolerating both terminal and internal alkenes with a wide range of functional groups.
Collapse
Affiliation(s)
- Yi-Dan Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Shan Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiao-Yong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiao-Yi Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China.
| |
Collapse
|
2
|
Renner J, Smith SR, Cowley JM, Louie J. Improved Total Synthesis of Indolizidine and Quinolizidine Alkaloids via Nickel-Catalyzed (4 + 2) Cycloaddition. J Org Chem 2022; 87:8871-8883. [PMID: 35759553 DOI: 10.1021/acs.joc.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ni-catalyzed (4 + 2) cycloaddition of bicyclic 3-azetidinones and alkynes was developed to access indolizidine and quinolizidine alkaloids. A key element was the development of a diazomethylation procedure that allows the efficient synthesis of bicyclic azetidinones from pyroglutamic and 6-oxopiperidine-2-carboxylic acid. A ligand screening led to improved regioselectivity and enantiopurity during the Ni-catalyzed (4 + 2) cycloaddition. This straightforward methodology was leveraged to synthesize (+)-ipalbidine, (+)-septicine, (+)-seco-antofine, and (+)-7-methoxy-julandine.
Collapse
Affiliation(s)
- Jonas Renner
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Sleight R Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Jacob M Cowley
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| |
Collapse
|
3
|
Yang D, Huang H, Zhang H, Yin LM, Song MP, Niu JL. Regioselective Intermolecular Hydroamination of Unactivated Alkenes: “Co–H” Enabled Remote Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - He Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ming Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
4
|
Heinz B, Djukanovic D, Filipponi P, Martin B, Karaghiosoff K, Knochel P. Regioselective difunctionalization of pyridines via 3,4-pyridynes. Chem Sci 2021; 12:6143-6147. [PMID: 33996011 PMCID: PMC8098683 DOI: 10.1039/d1sc01208h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
A new regioselective 3,4-difunctionalization of 3-chloropyridines via 3,4-pyridyne intermediates is reported. Regioselective lithiation of 3-chloro-2-ethoxypyridine and a related 2-thio-derivative followed by treatment with aryl- and alkylmagnesium halides as well as magnesium thiolates at -78 °C produced 3,4-pyridynes during heating to 75 °C. Regioselective addition of the Grignard moiety in position 4 followed by an electrophilic quench in position 3 led to various 2,3,4-trisubstituted pyridines. This method was adapted into a continuous flow set-up. As an application, we have prepared a key intermediate for (±)-paroxetine.
Collapse
Affiliation(s)
- Benjamin Heinz
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| | - Dimitrije Djukanovic
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| | - Paolo Filipponi
- Novartis Pharma AG, Chemical Development Fabrikstraße 4002 Basel Switzerland
| | - Benjamin Martin
- Novartis Pharma AG, Chemical Development Fabrikstraße 4002 Basel Switzerland
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| |
Collapse
|