1
|
Tsukano C, Uchino A, Irie K. Synthesis and applications of symmetric amino acid derivatives. Org Biomol Chem 2024; 22:411-428. [PMID: 37877370 DOI: 10.1039/d3ob01379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Symmetric α-amino acid derivatives can be used for the synthesis of intermolecularly linked peptides such as dimer-type peptides, and modified peptides in which two amino acids are intramolecularly linked. They are also synthetic intermediates for the total synthesis of natural products and functional molecules. These symmetric amino acid derivatives must be prepared based on organic synthesis. It is necessary to develop an optimal synthetic strategy for constructing the target symmetric amino acid derivative. In this review, we will introduce strategies for synthesizing symmetric amino acid derivatives. Additionally, selected applications of these amino acids in the life sciences will be described.
Collapse
Affiliation(s)
- Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ayumi Uchino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Anzawa R, Shiratsuchi E, Miyanari K, Chick CN, Mikagi A, Yamada M, Usuki T. LC–MS/MS analysis of desmosine and isodesmosine in skipjack tuna “Katsuo” elastin. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
Mikagi A, Tashiro R, Inoue T, Anzawa R, Imura A, Tanigawa T, Ishida T, Inoue T, Niizuma K, Tominaga T, Usuki T. Isotope-dilution LC-MS/MS analysis of the elastin crosslinkers desmosine and isodesmosine in acute cerebral stroke patients. RSC Adv 2022; 12:31769-31777. [PMID: 36380946 PMCID: PMC9639221 DOI: 10.1039/d2ra06009d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 06/25/2024] Open
Abstract
Utilizing chemically synthesized an isotopically labeled internal standard, isodesmosine-13C3,15N1, an isotope-dilution LC-MS/MS method was established. Concentrations of desmosine and isodesmosine in plasma of acute cerebral stroke patients and healthy controls were determined. The concentration of desmosines was markedly higher in plasma from acute stroke patients compared with healthy controls. Desmosines are thus novel biomarkers for evaluating the extent of vascular injury after acute cerebral stroke.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Ryosuke Tashiro
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi Aoba-ku Sendai 980-8574 Japan
| | - Tomoo Inoue
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi Aoba-ku Sendai 980-8574 Japan
- Department of Neurosurgery, Sendai Medical Center 2-11-12 Miyagino Miyagino-ku Sendai 983-8520 Japan
| | - Riki Anzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Akiho Imura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Takahiro Tanigawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Tomohisa Ishida
- Department of Neurosurgery, Sendai Medical Center 2-11-12 Miyagino Miyagino-ku Sendai 983-8520 Japan
| | - Takashi Inoue
- Department of Neurosurgery, Sendai Medical Center 2-11-12 Miyagino Miyagino-ku Sendai 983-8520 Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi Aoba-ku Sendai 980-8574 Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| |
Collapse
|
4
|
Total synthesis of merodesmosine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Synthesis of desmosine-BSA/KLH conjugates via Sonogashira/Negishi cross-coupling reactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Gupta A, Sharma Y, Pawar GP, Ashish, Nihalani D, Chaudhari VD. An Efficient and Scalable Synthesis of Isodesmosine. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aikan Gupta
- Division of Medicinal Chemistry, CSIR‐Institute of Microbial Technology Chandigarh India
| | - Yogesh Sharma
- Division of Medicinal Chemistry, CSIR‐Institute of Microbial Technology Chandigarh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Ganesh P. Pawar
- Division of Medicinal Chemistry, CSIR‐Institute of Microbial Technology Chandigarh India
| | - Ashish
- Division of Medicinal Chemistry, CSIR‐Institute of Microbial Technology Chandigarh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Deepak Nihalani
- Division of Nephrology Medical University of South Carolina Charleston South Carolina USA
| | - Vinod D. Chaudhari
- Division of Medicinal Chemistry, CSIR‐Institute of Microbial Technology Chandigarh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
7
|
|
8
|
IsoChichibabin desmosine- 13C 3, 15N 1 synthesis and quantitative LC-MS/MS analysis of desmosine and isodesmosine in human skin. Bioorg Med Chem 2021; 52:116519. [PMID: 34839160 DOI: 10.1016/j.bmc.2021.116519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Desmosine and isodesmosine are crosslinking amino acids of elastin, which is an essential component of the dermal extracellular matrix protein. Quantitative analysis of crosslinker desmosines in human skin dermis has not been fully achieved due to the insoluble nature of elastin protein. In the present study, chemical synthesis of isotopically labeled desmosine, desmosine-13C3,15N1, was carried out via isoChichibabin pyridinium synthesis starting from corresponding isotopically labeled amino acids. Isotope-dilution LC-MS/MS analysis of desmosine and isodesmosine utilizing synthetic desmosine-13C3,15N1 enabled the quantitative analysis of desmosines in human skin for the first time. Thus, ca. 1.43 μg of desmosines was detected from analysis of 1 mg of dry human skin.
Collapse
|
9
|
Hirose M, Tanaka N, Usuki T. Chichibabin/isoChichibabin pyridinium synthesis of ma'edamines C and D. Bioorg Med Chem Lett 2021; 46:128165. [PMID: 34077773 DOI: 10.1016/j.bmcl.2021.128165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Ma'edamines C and D were isolated from an Okinawan marine sponge and exhibited a unique tetrasubstituted pyridinium skeleton. The proposed biosynthetic pathway is similar to that of desmosine and isodesmosine, which are elastin-crosslinking amino acids. In this study, first total synthesis of ma'edamines C and D was achieved via Pr(OTf)3-promoted Chichibabin/isoChichibabin pyridinium synthesis starting from the corresponding aldehydes and amine.
Collapse
Affiliation(s)
- Mika Hirose
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Nao Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
10
|
Pan Z, Hu F, Jiang D, Liu Y, Xia C. Chichibabin pyridinium synthesis via oxidative decarboxylation of photoexcited α-enamine acids. Chem Commun (Camb) 2021; 57:1222-1225. [PMID: 33416811 DOI: 10.1039/d0cc07636h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-induced decarboxylative Chichibabin pyridinium synthesis between α-amino acids and aldehydes was developed. When the in situ generated α-enamine acids were photoexcited, they were oxidized by aerobic oxygen to give radical cation species. After decarboxylation and further oxidation, the generated iminium undergoes Chichibabin cyclization to afford pyridiniums. This photochemical protocol enables the synthesis of various tetra-substituted pyridiniums and related natural products in one-step.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Di Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
11
|
Baut DA, Tanaka N, Yokoo R, Usuki T. Preparation of isodesmosine-KLH conjugate for ELISA system. Chirality 2020; 32:431-436. [PMID: 32027414 DOI: 10.1002/chir.23175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a degenerative condition with limited diagnostic detection efficiency. Currently with no available cure, COPD is associated with irreversible elastic tissue degradation in lungs, which results in release of unusual amino acids, isodesmosine and desmosine. These biomarkers are potential key elements in enzyme-linked immunosorbent assay (ELISA), an analytical method, which can detect certain compounds including antigens and proteins in easy and affordable manner. In order to target a biomarker with ELISA, it is necessary to prepare its specific antibody, which can be achieved by immunization of host organism with appropriate antigen containing the biomarker. Although preparation of these types of conjugates has been published, desmosine and isodesmosine used by researchers are obtained from natural sources such as animal tissues. Here, we report the first synthetic preparation of isodesmosine and keyhole limpet hemocyanin (KLH) conjugate from commercially available chiral amino acids and carrier protein. Formation of the core pyridinium of isodesmosine was achieved through key reaction-Chichibabin pyridinium synthesis-to deliver a 1,2,3,5-tetrasubstituted pyridinium amino acid selectively. Further modifications involving KLH and maleimide linker provided the target conjugate, which could potentially invoke an immune response to produce anti-isodesmosine antibody for the ELISA system.
Collapse
Affiliation(s)
- Daria A Baut
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nao Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Reiko Yokoo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
12
|
Preparation of Protected 13C n-Labeled Isodesmosines: Mechanistic Insight of Isodesmosine Formation. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
|
14
|
|