1
|
Pan L, Schneider F, Ottenbruch M, Wiechert R, List T, Schoch P, Mertes B, Gaich T. A general strategy for the synthesis of taxane diterpenes. Nature 2024; 632:543-549. [PMID: 38862025 DOI: 10.1038/s41586-024-07675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The carbon skeleton of any organic molecule serves as the foundation for its three-dimensional structure, playing a pivotal role in determining its physical and biological properties1. As such, taxane diterpenes are one of the most well-known natural product families, primarily owing to the success of their most prominent compound, paclitaxel, an effective anticancer therapeutic for more than 25 years2-6. In contrast to classical taxanes, the bioactivity of cyclotaxanes (also referred to as complex taxanes) remains significantly underexplored. The carbon skeletons of these two groups of taxanes differ significantly, and so would typically their own distinct synthetic approaches. Here we report a versatile synthetic strategy based on the interconversion of complex molecular frameworks, providing general access to the wider taxane diterpene family. A range of classical and cyclotaxane frameworks was prepared including, among others, the total syntheses of taxinine K (2), canataxapropellane (5) and dipropellane C from a single advanced intermediate. The synthetic approach deliberately eschews biomimicry, emphasizing instead the power of stereoelectronic control in orchestrating the interconversion of polycyclic frameworks.
Collapse
Affiliation(s)
- Lu Pan
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| | - Fabian Schneider
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Scripps Research, La Jolla, CA, USA
| | | | - Rainer Wiechert
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Tatjana List
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Philipp Schoch
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Bastian Mertes
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Tanja Gaich
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| |
Collapse
|
2
|
Zhang MZ, Yang X, Yin JX, Deng Y, Tan HY, Bai YH, Li YL, Wen J, Chen T. Chemoselective Synthesis of 3-Bromomethyloxindoles via Visible-Light-Induced Radical Cascade Bromocyclization of Alkenes. Org Lett 2024; 26:3923-3928. [PMID: 38662964 DOI: 10.1021/acs.orglett.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A novel visible-light-induced radical cascade bromocyclization of N-arylacrylamides has been accomplished. This reaction overcomes the overbromination at the benzene rings suffered in traditional electrophilic reactions, thus enabling the first highly chemoselective synthesis of valuable 3-bromomethyloxindoles. The combination of pyridine and anhydrous medium is identified as the key factor for the high chemoselectivity in the current photoreaction system, which might work by suppressing the in situ generation of low-concentration Br2 from N-bromosuccinimide. Moreover, the mild reaction conditions ensure the generation of a wide range of the new desired products with excellent functional group tolerance.
Collapse
Affiliation(s)
- Ming-Zhong Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Xin Yang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Jin-Xing Yin
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Ya Deng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Hong-Ying Tan
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Yu-Heng Bai
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Ya-Lin Li
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Haikou, Hainan 570228, People's Republic of China
| |
Collapse
|
3
|
Chen Z, Shen Z. Nickel-catalyzed asymmetric reductive arylcyanation of alkenes with acetonitrile as the cyano source. Org Chem Front 2023. [DOI: 10.1039/d2qo01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chiral 3-cyanomethyl oxindoles were synthesized in high enantioselectivities and yields. The employment of acetonitrile as a cyano source via Zn(OTf)2-assisted β-carbon elimination is distinct from the common cyanation reaction modes.
Collapse
Affiliation(s)
- Zhenbang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Cheng H, Luo Y, Lam TL, Liu Y, Che CM. Visible-light-induced radical cascade reaction to prepare oxindoles via alkyl radical addition to N-arylacryl amides. Org Chem Front 2022. [DOI: 10.1039/d2qo01140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical approach towards oxindoles with C3 quaternary centers by the radical cascade reaction of α,β-unsaturated N-arylacryl amides with alkyl bromides or iodides upon visible light irradiation under mild reaction conditions was developed.
Collapse
Affiliation(s)
- Hanchao Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Yunfeng Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
5
|
Day DP, Alsenani NI, Alsimaree AA. Reactivity and Applications of Iodine Monochloride in Synthetic Approaches. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David P. Day
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos SP Brazil
| | - Nawaf I. Alsenani
- Department of Chemistry Al Baha University 1988 Al Baha Saudi Arabia
| | - Abdulrahman A. Alsimaree
- Department of Basic Science (Chemistry) College of Science and Humanities Shaqra University Afif Saudi Arabia (KSA
| |
Collapse
|
6
|
Liang ZP, Yi W, Wang PF, Liu GQ, Ling Y. Iodosobenzene-Mediated Three-Component Selenofunctionalization of Olefins. J Org Chem 2021; 86:5292-5304. [DOI: 10.1021/acs.joc.1c00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi-Peng Liang
- School of Pharmacy and Analysis & Testing Center, Nantong University, Nantong 226019, People′s Republic of China
| | - Wei Yi
- School of Pharmacy and Analysis & Testing Center, Nantong University, Nantong 226019, People′s Republic of China
| | - Peng-Fei Wang
- School of Pharmacy and Analysis & Testing Center, Nantong University, Nantong 226019, People′s Republic of China
| | - Gong-Qing Liu
- School of Pharmacy and Analysis & Testing Center, Nantong University, Nantong 226019, People′s Republic of China
| | - Yong Ling
- School of Pharmacy and Analysis & Testing Center, Nantong University, Nantong 226019, People′s Republic of China
| |
Collapse
|
7
|
China H, Kumar R, Kikushima K, Dohi T. Halogen-Induced Controllable Cyclizations as Diverse Heterocycle Synthetic Strategy. Molecules 2020; 25:molecules25246007. [PMID: 33353126 PMCID: PMC7765919 DOI: 10.3390/molecules25246007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
In organic synthesis, due to their high electrophilicity and leaving group properties, halogens play pivotal roles in the activation and structural derivations of organic compounds. Recently, cyclizations induced by halogen groups that allow the production of diverse targets and the structural reorganization of organic molecules have attracted significant attention from synthetic chemists. Electrophilic halogen atoms activate unsaturated and saturated hydrocarbon moieties by generating halonium intermediates, followed by the attack of carbon-containing, nitrogen-containing, oxygen-containing, and sulfur-containing nucleophiles to give highly functionalized carbocycles and heterocycles. New transformations of halogenated organic molecules that can control the formation and stereoselectivity of the products, according to the difference in the size and number of halogen atoms, have recently been discovered. These unique cyclizations may possibly be used as efficient synthetic strategies with future advances. In this review, innovative reactions controlled by halogen groups are discussed as a new concept in the field of organic synthesis.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga 526-0829, Japan
- Correspondence: (H.C.); (T.D.)
| | - Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana 121006, India;
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-0058, Japan;
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-0058, Japan;
- Correspondence: (H.C.); (T.D.)
| |
Collapse
|
8
|
Duddupudi AL, Pandey P, Vo H, Welsh CL, Doerksen RJ, Cuny GD. Hypervalent Iodine Mediated Oxidative Cyclization of Acrylamide N-Carbamates to 5,5-Disubstituted Oxazolidine-2,4-diones. J Org Chem 2020; 85:7549-7557. [DOI: 10.1021/acs.joc.0c00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anantha Lakshmi Duddupudi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health Building 2, Room 7036, Houston, Texas 77204-5000, United States
| | - Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Hien Vo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health Building 2, Room 7036, Houston, Texas 77204-5000, United States
| | - Colin L. Welsh
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Robert J. Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health Building 2, Room 7036, Houston, Texas 77204-5000, United States
| |
Collapse
|
9
|
Lorenc C, Vibbert HB, Yao C, Norton JR, Rauch M. H· Transfer-Initiated Synthesis of γ-Lactams: Interpretation of Cycloisomerization and Hydrogenation Ratios. ACS Catal 2019; 9:10294-10298. [PMID: 32195013 PMCID: PMC7082086 DOI: 10.1021/acscatal.9b03678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobaloxime/H2 system used to synthesize valuable γ-lactams from acrylamide molecules is described. In addition to cycloisomerized lactams, linear hydrogenated products were also observed. The amounts of the hydrogenation product were observed to correlate with the bulk of the substituent on the acrylamide nitrogen. Further analysis of the product distributions with experimental and computational studies suggested that while cyclization can occur from one C=C acrylamide rotamer, hydrogenation can occur from both. This observation was further evinced through calculation of the hydrogenation rate constant, which was observed to be ca. 102 faster than previously determined for a related system using n Bu3SnH.
Collapse
Affiliation(s)
| | - Hunter B. Vibbert
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R. Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Michael Rauch
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
10
|
Sengoden M, North M, Whitwood AC. Synthesis of Oxazolidinones by using Carbon Dioxide as a C 1 Building Block and an Aluminium-Based Catalyst. CHEMSUSCHEM 2019; 12:3296-3303. [PMID: 31141295 DOI: 10.1002/cssc.201901171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Oxazolidinone synthesis through the coupling of carbon dioxide and aziridines was catalysed by an aluminium(salphen) complex at 50-100 °C and 1-10 bar pressure under solvent-free conditions. The process was applicable to a variety of substituted aziridines, giving products with high regioselectivity. It involved the use of a sustainable and reusable aluminium-based catalyst, used carbon dioxide as a C1 source and provided access to pharmaceutically important oxazolidinones as illustrated by a total synthesis of toloxatone. This protocol was scalable, and the catalyst could be recovered and reused. A catalytic cycle was proposed based on stereochemical, kinetic and Hammett studies.
Collapse
Affiliation(s)
- Mani Sengoden
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Michael North
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|