1
|
Wong JYF, Thomson CG, Vilela F, Barker G. Flash chemistry enables high productivity metalation-substitution of 5-alkyltetrazoles. Chem Sci 2021; 12:13413-13424. [PMID: 34777760 PMCID: PMC8528014 DOI: 10.1039/d1sc04176b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tetrazoles play a prominent role in medicinal chemistry due to their role as carboxylate bioisosteres but have largely been overlooked as C-H functionalisation substrates. We herein report the development of a high-yielding and general procedure for the heterobenzylic C-H functionalisation of 5-alkyltetrazoles in up to 97% yield under batch conditions using a metalation/electrophilic trapping strategy. Through the use of thermal imaging to identify potentially unsafe exotherms, a continuous flow procedure using a flash chemistry strategy has also been developed, allowing products to be accessed in up to 95% yield. This enabled an extremely high productivity rate of 141 g h-1 to be achieved on an entry-level flow system.
Collapse
Affiliation(s)
- Jeff Y F Wong
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Christopher G Thomson
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Filipe Vilela
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| |
Collapse
|
2
|
Roupnel L, Guillot R, Gori D, Viswambharan B, Kouklovsky C, Alezra V. Highly Stereoselective Aldol Reactions by Memory of Chirality: Synthesis of Quaternary β‐Hydroxy α‐Amino Acids. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Loïc Roupnel
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Services communs CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Services communs CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Didier Gori
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
- Aix Marseille University - CNRS UMR7376 Laboratory of Environmental Chemistry FR-13331 Marseille France
| | - Baby Viswambharan
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Valérie Alezra
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| |
Collapse
|
3
|
Cui Y, Zhai Y, Xiao J, Li C, Zheng WF, Huang C, Wu G, Qin A, Lin J, Liu Q, Wang H, Wu P, Xu H, Zheng Y, Ma S. Chirality memory of α-methylene-π-allyl iridium species. Chem Sci 2021; 12:11831-11838. [PMID: 34659722 PMCID: PMC8442685 DOI: 10.1039/d1sc02636d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Chirality is one of the most important types of steric information in nature. In addition to central chirality, axial chirality has been catching more and more attention from scientists. However, although much attention has recently been paid to the creation of axial chirality and the chirality transfer of allenes, no study has been disclosed as to the memory of such an axial chirality. The reason is very obvious: the chiral information is stored over three carbon atoms. Here, the first example of the memory of chirality (MOC) of allenes has been recorded, which was realized via an optically active alkylidene-π-allyl iridium intermediate, leading to a highly stereoselective electrophilic allenylation with amines. Specifically, we have established the transition metal-mediated highly stereoselective 2,3-allenylation of amines by using optically active 2,3-allenyl carbonates under the catalysis of a nonchiral iridium(iii) complex. This method is compatible with sterically bulky and small substituents on both amines and 2,3-allenyl carbonates and furnishes the desired optically active products with a high efficiency of chirality transfer. Further mechanistic experiments reveal that the isomerization of the optically active alkylidene-π-allyl iridium intermediate is very slow. Chirality is one of the most important types of steric information in nature.![]()
Collapse
Affiliation(s)
- Yifan Cui
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Chaofan Huang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Guolin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Qi Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Penglin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yangguangyan Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
4
|
Inoue K, Feng Y, Mori A, Okano K. "Snapshot" Trapping of Multiple Transient Azolyllithiums in Batch. Chemistry 2021; 27:10267-10273. [PMID: 33960030 DOI: 10.1002/chem.202101256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/23/2022]
Abstract
Recent developments in flow microreactor technology have allowed the use of transient organolithium compounds that cannot be realized in a batch reactor. However, trapping the transient aryllithiums in a "halogen dance" is still challenging. Herein is reported the trapping of such short-lived azolyllithiums in a batch reactor by developing a finely tuned in situ zincation using zinc halide diamine complexes. The reaction rate is controlled by the appropriate choice of diamine ligand. The reaction is operationally simple and can be performed at 0 °C with high reproducibility on a multigram scale. This method was applicable to a wide range of brominated azoles allowing deprotonative functionalization, which was used for the concise divergent syntheses of both constitutional isomers of biologically active azoles.
Collapse
Affiliation(s)
- Kengo Inoue
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuxuan Feng
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
5
|
|
6
|
|
7
|
Hardwick T, Cicala R, Ahmed N. Memory of chirality in a room temperature flow electrochemical reactor. Sci Rep 2020; 10:16627. [PMID: 33024244 PMCID: PMC7539001 DOI: 10.1038/s41598-020-73957-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an l-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield (71%) and a higher enantiomeric excess (64%). These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes.
Collapse
Affiliation(s)
- Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Rossana Cicala
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. .,International Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
|
9
|
Yamamoto K, Kuriyama M, Onomura O. Anodic Oxidation for the Stereoselective Synthesis of Heterocycles. Acc Chem Res 2020; 53:105-120. [PMID: 31872753 DOI: 10.1021/acs.accounts.9b00513] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
10
|
Nagaki A, Yamashita H, Tsuchihashi Y, Hirose K, Takumi M, Yoshida JI. Generation and Reaction of Functional Alkyllithiums by Using Microreactors and Their Application to Heterotelechelic Polymer Synthesis. Chemistry 2019; 25:13719-13727. [PMID: 31400025 DOI: 10.1002/chem.201902867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/04/2019] [Indexed: 12/29/2022]
Abstract
Flow microreactors enabled the successful generation of various functional alkyllithiums containing electrophilic functional groups, as well as the use of these alkyllithiums in subsequent reactions. The high reactivity of these series of reactions could be achieved by the extremely accurate and selective control of residence time. Moreover, integrated flow microreactor systems could be used to successfully synthesize heterotelechelic polymers with two functionalities, one at each end, via a process involving controlled anionic polymerization initiated by functional alkyllithium compounds, followed by trapping reactions with difunctional electrophiles.
Collapse
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Katsuyuki Hirose
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Tuan Zhao
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601CNRS-Université de Paris, Faculté des Sciences Fondamentales et Biomédicales 45 Rue des Saints-Pères FR-75006 Paris France
| | - Laurent Micouin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601CNRS-Université de Paris, Faculté des Sciences Fondamentales et Biomédicales 45 Rue des Saints-Pères FR-75006 Paris France
| | - Riccardo Piccardi
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601CNRS-Université de Paris, Faculté des Sciences Fondamentales et Biomédicales 45 Rue des Saints-Pères FR-75006 Paris France
| |
Collapse
|
12
|
Wong JYF, Tobin JM, Vilela F, Barker G. Batch Versus Flow Lithiation–Substitution of 1,3,4‐Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry. Chemistry 2019; 25:12439-12445. [DOI: 10.1002/chem.201902917] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jeff Y. F. Wong
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - John M. Tobin
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - Filipe Vilela
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - Graeme Barker
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| |
Collapse
|