1
|
Perdicchia D. Borane-Trimethylamine Complex: A Versatile Reagent in Organic Synthesis. Molecules 2024; 29:2017. [PMID: 38731507 PMCID: PMC11085582 DOI: 10.3390/molecules29092017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Borane-trimethylamine complex (Me3N·BH3; BTM) is the most stable of the amine-borane complexes that are commercially available, and it is cost-effective. It is a valuable reagent in organic chemistry with applications in the reduction of carbonyl groups and carbon-nitrogen double bond reduction, with considerable examples in the reduction of oximes, hydrazones and azines. The transfer hydrogenation of aromatic N-heterocycles and the selective N-monomethylation of primary anilines are further examples of recent applications, whereas the reduction of nitrobenzenes to anilines and the reductive deprotection of N-tritylamines are useful tools in the organic synthesis. Moreover, BTM is the main reagent in the regioselective cleavage of cyclic acetals, a reaction of great importance for carbohydrate chemistry. Recent innovative applications of BTM, such as CO2 utilization as feedstock and radical chemistry by photocatalysis, have extended their usefulness in new reactions. The present review is focused on the applications of borane-trimethylamine complex as a reagent in organic synthesis and has not been covered in previous reviews regarding amine-borane complexes.
Collapse
Affiliation(s)
- Dario Perdicchia
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Borbás A, Herczeg M, Demeter F, Bényei A. Synthesis of the Three Most Expensive l-Hexose Thioglycosides from d-Glucose. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe biologically important l-hexoses, which are less widespread than d-hexoses, cannot be obtained from natural sources or can only be extracted very costly. Due to the complexity of their synthesis, their commercially available derivatives (which are sold mostly in free form) are also very expensive, which is further exacerbated by the current rapid rise in prices. In the present work, starting from the cheapest d-hexose, d-glucose, using inexpensive and readily available chemicals, a reaction pathway was developed in which the three most expensive l-hexoses (l-idose, l-altrose, and l-talose) were successfully prepared in orthogonally protected thioglycoside form, ready for glycosylation. The l-ido and l-talo derivatives were synthesized by C-5 epimerization of the corresponding 5,6-unsaturated thioglycosides. From the l-ido derivatives, the orthogonally protected thioglycosides of l-altrose were then prepared by C-4 epimerization. Different approaches to the preparation of the key intermediates, 5,6-unsaturated thioglycoside derivatives, were systematically investigated in the presence of various protecting groups (ether and ester) and using commercially available reagents.
Collapse
Affiliation(s)
- Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
| | - Attila Bényei
- Laboratory for X-ray Diffraction, Department of Physical Chemistry, University of Debrecen
| |
Collapse
|
4
|
Herczeg M, Demeter F, Lisztes E, Racskó M, Tóth BI, Timári I, Bereczky Z, Kövér KE, Borbás A. Synthesis of a Heparinoid Pentasaccharide Containing l-Guluronic Acid Instead of l-Iduronic Acid with Preserved Anticoagulant Activity. J Org Chem 2022; 87:15830-15836. [PMID: 36411253 DOI: 10.1021/acs.joc.2c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
l-Iduronic acid is a key constituent of heparin and heparan sulfate polysaccharides due to its unique conformational plasticity, which facilitates the binding of polysaccharides to proteins. At the same time, this is the synthetically most challenging unit of heparinoid oligosaccharides; therefore, there is a high demand for its replacement with a more easily accessible sugar unit. In the case of idraparinux, an excellent anticoagulant heparinoid pentasaccharide, we demonstrated that l-iduronic acid can be replaced by an easier-to-produce l-sugar while maintaining its essential biological activity. From the inexpensive d-mannose, through a highly functionalized phenylthio mannoside, the l-gulose donor was prepared by C-5 epimerization in 10 steps with excellent yield. This unit was incorporated into the pentasaccharide by α-selective glycosylation and oxidized to l-guluronic acid. The complete synthesis required only 36 steps, with 21 steps for the longest linear route. The guluronate containing pentasaccharide inhibited coagulation factor Xa by 50% relative to the parent compound, representing an excellent anticoagulant activity. To the best of our knowledge, this is the first biologically active heparinoid anticoagulant which contains a different sugar unit instead of l-iduronic acid.
Collapse
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH Egyetem tér 1, Debrecen H-4032, Hungary
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary.,Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary
| | - István Timári
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
5
|
Demeter F, Bereczki I, Borbás A, Herczeg M. Synthesis of Four Orthogonally Protected Rare l-Hexose Thioglycosides from d-Mannose by C-5 and C-4 Epimerization. Molecules 2022; 27:3422. [PMID: 35684360 PMCID: PMC9182441 DOI: 10.3390/molecules27113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/30/2023] Open
Abstract
l-Hexoses are important components of biologically relevant compounds and precursors of some therapeuticals. However, they typically cannot be obtained from natural sources and due to the complexity of their synthesis, their commercially available derivatives are also very expensive. Starting from one of the cheapest d-hexoses, d-mannose, using inexpensive and readily available chemicals, we developed a reaction pathway to obtain two orthogonally protected l-hexose thioglycoside derivatives, l-gulose and l-galactose, through the corresponding 5,6-unsaturated thioglycosides by C-5 epimerization. From these derivatives, the orthogonally protected thioglycosides of further two l-hexoses (l-allose and l-glucose) were synthesized by C-4 epimerization. The preparation of the key intermediates, the 5,6-unsaturated derivatives, was systematically studied using various protecting groups. By the method developed, we are able to produce highly functionalized l-gulose derivatives in 9 steps (total yields: 21-23%) and l-galactose derivatives in 12 steps (total yields: 6-8%) starting from d-mannose.
Collapse
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Zhou Z, Zhang L, Wu X, Luo L, Wu J, Xu D, Wu M. Chemical synthesis and pharmacological properties of heparin pentasaccharide analogues. Eur J Med Chem 2022; 234:114256. [DOI: 10.1016/j.ejmech.2022.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
7
|
Paul A, Kulkarni SS. Synthesis of L-hexoses: an Update. CHEM REC 2021; 21:3224-3237. [PMID: 34075685 DOI: 10.1002/tcr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Over the years, carbohydrates have increasingly become an important class of compounds contributing significantly to the target specific drug discovery and vaccine development. Several oligosaccharides contain L-hexoses that are biologically relevant as therapeutic and diagnostic tools. Since, L-hexoses and deoxy L-hexoses are not readily available in large amount and pure form, attention is drawn towards development of cost effective and high yielding synthetic routes for their procurement. In this review we give an update on the recent developments in strategies for synthesis of L-hexoses and deoxy L-hexoses.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
8
|
Lisztes E, Mező E, Demeter F, Horváth L, Bősze S, István Tóth B, Borbás A, Herczeg M. Synthesis and Cell Growth Inhibitory Activity of Six Non-glycosaminoglycan-Type Heparin-Analogue Trisaccharides. ChemMedChem 2021; 16:1467-1476. [PMID: 33433040 PMCID: PMC8247843 DOI: 10.1002/cmdc.202000917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Indexed: 12/27/2022]
Abstract
The design and synthesis of heparin mimetics with high anticancer activity but no anticoagulant activity is an important task in medicinal chemistry. Herein, we present the efficient synthesis of five Glc-GlcA-Glc-sequenced and one Glc-IdoA-Glc-sequenced non-glycosaminoglycan, heparin-related trisaccharides with various sulfation/sulfonylation and methylation patterns. The cell growth inhibitory effects of the compounds were tested against four cancerous human cell lines and two non-cancerous cell lines. Two d-glucuronate-containing tetra-O-sulfated, partially methylated trisaccharides displayed remarkable and selective inhibitory effects on the growth of ovary carcinoma (A2780) and melanoma (WM35) cells. Methyl substituents on the glucuronide unit proved to be detrimental, whereas acetyl substituents were beneficial to the cytostatic activity of the sulfated derivatives.
Collapse
Affiliation(s)
- Erika Lisztes
- Department of PhysiologyUniversity of Debrecen PO Box 224012DebrecenHungary
| | - Erika Mező
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Fruzsina Demeter
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Molecular Recognition and Interaction Research Group, ELKHUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Balázs István Tóth
- Department of PhysiologyUniversity of Debrecen PO Box 224012DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Mihály Herczeg
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Research Group for Oligosaccharide Chemistry, ELKHEgyetem tér 14032DebrecenHungary
| |
Collapse
|