1
|
Kajtár M, Király SB, Bényei A, Kiss-Szikszai A, Kónya-Ábrahám A, Horváth LB, Bősze S, Kotschy A, Paczal A, Kurtán T. Knoevenagel-IMHDA and -IMSDA sequences for the synthesis of chiral condensed O,N-, S,N- and N-heterocycles. RSC Adv 2025; 15:1230-1248. [PMID: 39816179 PMCID: PMC11733422 DOI: 10.1039/d4ra08353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Domino Knoevenagel-cyclization reactions of styrene substrates, containing an N-(ortho-formyl)aryl subunit, were carried out with N-substituted 2-cyanoacetamides to prepare tetrahydro-4H-pyrano[3,4-c]quinolone and hexahydrobenzo[j]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1H-pyrano[3,4-c]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds. The chemo-, regio- and diastereoselectivity of the cyclization step were investigated and structural elucidation was aided by single crystal X-ray analysis.
Collapse
Affiliation(s)
- Mihály Kajtár
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
- Doctoral School of Chemistry, University of Debrecen Egyetem Square 1 4032 Debrecen Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen Egyetem Square 1 4032 Debrecen Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| | - Anita Kónya-Ábrahám
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| | - Lilla Borbála Horváth
- Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University H1117 Budapest Hungary
| | - Szilvia Bősze
- Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University H1117 Budapest Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Faculty of Medicine Budapest 1089 Hungary
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry Budapest 1031 Hungary
| | - Attila Paczal
- Servier Research Institute of Medicinal Chemistry Budapest 1031 Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
| |
Collapse
|
2
|
Kajtár M, Király SB, Bényei A, Kiss-Szikszai A, Kónya-Ábrahám A, Zhang N, Horváth LB, Bősze S, Li D, Kotschy A, Paczal A, Kurtán T. Competing Domino Knoevenagel-Cyclization Sequences with N-Arylcinnamylamines. J Org Chem 2024; 89:6937-6950. [PMID: 38691817 DOI: 10.1021/acs.joc.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Domino Knoevenagel-cyclization reactions of N-arylcinnamylamines were carried out with active methylene reagents, which took place with five competing cyclization mechanisms: intramolecular hetero Diels-Alder reaction, stepwise polar [2 + 2] cycloaddition, styryl or aza-Diels-Alder reactions followed by rearomatization, and [1,5]-hydride shift-6-endo cyclization. In the stepwise aza-Diels-Alder reaction, the N-vinylpyridinium moiety acted as an azadiene, producing a condensed heterocycle with tetrahydroquinolizinium and tetrahydroquiniline subunits. Antiproliferative activity with low micromolar IC50 values was identified for some of the novel scaffolds.
Collapse
Affiliation(s)
- Mihály Kajtár
- Department of Organic Chemistry, University of Debrecen, Debrecen 4002, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary
| | | | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, Debrecen 4002, Hungary
| | | | - Anita Kónya-Ábrahám
- Department of Organic Chemistry, University of Debrecen, Debrecen 4002, Hungary
| | - Ning Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Lilla Borbála Horváth
- Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University, H1117 Budapest, Hungary
| | - Szilvia Bősze
- Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University, H1117 Budapest, Hungary
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Budapest 1031, Hungary
| | - Attila Paczal
- Servier Research Institute of Medicinal Chemistry, Budapest 1031, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen 4002, Hungary
| |
Collapse
|
3
|
Zubkov FI, Krishna G, Grudinin DG, Nikitina EV. IntraMolecular Diels–Alder Reactions of Vinylarenes and Alkynyl Arenes (the IMDAV Reaction). SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1705983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThis comprehensive review summarizes the published literature data concerning the intramolecular Diels–Alder reactions of vinylarenes (the IMDAV reaction) and alkynyl arenes from 1970 to 2019, and covers mainly intramolecular [4+2] cycloaddition reactions of vinyl- or acetylene-substituted furans, thiophenes, pyrroles, indoles, imidazoles, benzenes, and naphthalenes, in which the unsaturated substituent is linked directly to an arene moiety. The selected area of the Diels–Alder reaction differs from other forms of [4+2] cycloadditions due to the uniqueness of the diene fragment, which, along with an exocyclic multiple bond, includes the double bond of an aromatic or heteroaromatic nucleus in its system. Thus, during the formation of the [4+2] cycloaddition intermediate, the aromaticity of furan, thiophene and even benzene rings is broken, leading, as a rule, to the formation of heterocyclic structures rarely accessible by other methods, in contrast to the majority of intermolecular Diels–Alder reactions, with the highest degree of chemo-, regio-, and diastereoselectivity. Therefore, the IMDAV approach is often used for the synthesis of naturally occurring and bioactive molecules, which are also discussed in this review alongside other applications of this reaction. Whenever possible, we have tried to avoid examples of radical, photochemical, oxidative, precious-metal-complex-catalyzed cyclizations and other types of formal [4+2] cycloadditions, focusing on thermal Diels–Alder reactions in the first step, according to the classical mechanism. The second stage of the process, aromatization, is unique for many initial substrates, and hence considerable attention in this overview is given to the detailed description of the reaction mechanisms.1 Introduction2 IMDAV Reactions of Vinylfurans2.1 Alkenes as Internal Dienophiles2.2 Alkynes and Allenes as Internal Dienophiles3 IMDAV Reactions of Vinylthiophenes3.1 Alkenes as Internal Dienophiles3.2 Alkynes as Internal Dienophiles4 IMDAV Reactions of Vinylbenzothiophenes5 IMDAV Reactions of Vinylpyrroles6 IMDAV Reactions of Vinylindoles6.1 Alkenes as Internal Dienophiles6.2 Alkynes as Internal Dienophiles7 IMDAV Reactions of Styrenes and Vinylnaphthalenes7.1 Alkenes as Internal Dienophiles7.2 Alkynes as Internal Dienophiles7.3 Alkynes as Internal Dienophiles in Aryl Acetylenes (the Intramolecular Dehydro Diels–Alder Reaction)8 IMDAV Reactions of Vinylimidazoles, Vinylisoxazoles and Vinylpyridines9 Conclusion10 Abbreviations
Collapse
|
4
|
Sugiura H, Yamazaki S, Ogawa A. Sequential Intramolecular Diels–Alder Reaction of 3‐Heteroaryl‐2‐propenylamides of Ethenetricarboxylate. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hirotaka Sugiura
- Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture University Gakuen‐cho 1‐1, Nakaku, Sakai Osaka 599‐8531 Japan
| | - Shoko Yamazaki
- Department of ChemistryNara University of Education Takabatake‐cho Nara 630‐8528 Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture University Gakuen‐cho 1‐1, Nakaku, Sakai Osaka 599‐8531 Japan
| |
Collapse
|