1
|
Riebe J, Bädorf B, Löffelsender S, Gutierrez Suburu ME, Rivas Aiello MB, Strassert CA, Grimme S, Niemeyer J. Molecular folding governs switchable singlet oxygen photoproduction in porphyrin-decorated bistable rotaxanes. Commun Chem 2024; 7:171. [PMID: 39112693 PMCID: PMC11306352 DOI: 10.1038/s42004-024-01247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rotaxanes are mechanically interlocked molecules where a ring (macrocycle) is threaded onto a linear molecule (thread). The position of the macrocycle on different stations on the thread can be controlled in response to external stimuli, making rotaxanes applicable as molecular switches. Here we show that bistable rotaxanes based on the combination of a Zn(II) tetraphenylporphyrin photosensitizer, attached to the macrocycle, and a black-hole-quencher, attached to the thread, are capable of singlet oxygen production which can be switched on/off by the addition of base/acid. However, we found that only a sufficiently long linker between both stations on the thread enabled switchability, and that the direction of switching was inversed with regard to the original design. This unexpected behavior was attributed to intramolecular folding of the rotaxanes, as indicated by extensive theoretical calculations. This evidences the importance to take into account the conformational flexibility of large molecular structures when designing functional switchable systems.
Collapse
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sarah Löffelsender
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - María Belén Rivas Aiello
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany.
| |
Collapse
|
2
|
Codesal MD, David AHG, Santos CIM, Álvaro-Martins MJ, Maçôas E, Campaña AG, Blanco V. Curved Nanographenes as Stoppers in a [2]Rotaxane with Two-Photon Excited Emission. J Org Chem 2024; 89:9344-9351. [PMID: 38907714 PMCID: PMC11232015 DOI: 10.1021/acs.joc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Heptagon-containing distorted nanographenes are used as stoppers for the capping of a [2]rotaxane through a Michael-type addition reaction to vinyl sulfone groups. These curved aromatics are bulky enough to prevent the disassembly of the rotaxane but also give emissive and nonlinear (two-photon absorption and emission) optical properties to the structure.
Collapse
Affiliation(s)
- Marcos D Codesal
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Arthur H G David
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Carla I M Santos
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Maria J Álvaro-Martins
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Ermelinda Maçôas
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Araceli G Campaña
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Özkan AU, Tuncel D, Erbaş A. Effect of Charge State on the Equilibrium and Kinetic Properties of Mechanically Interlocked [5]Rotaxane: A Molecular Dynamics Study. J Phys Chem B 2023; 127:1254-1263. [PMID: 36716388 PMCID: PMC9923746 DOI: 10.1021/acs.jpcb.2c07645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rotaxanes can exhibit stimuli-responsive behavior by allowing positional fluctuations of their rota groups in response to physiochemical conditions such as the changes in solution pH. However, ionic strength of the solution also affects the molecular conformation by altering the charge state of the entire molecule, coupling the stimuli-responsiveness of rotaxanes with their conformation. A molecular-scale investigation on a model system can allow the decoupling and identification of various effects and can greatly benefit applications of such molecular switches. By using atomistic molecular dynamics simulations, we study equilibrium and kinetics properties of various charge states of the [5]rotaxane, which is a supramolecular moiety with four rotaxanes bonded to a porphyrin core. We model various physiochemical charge states, each of which can be realized at various solution pH levels as well as several exotic charge distributions. By analyzing molecular configurations, hydrogen bonding, and energetics of single molecules in salt-free water and its polyrotaxanated network at the interface of water and chloroform, we demonstrate that charge-neutral and negatively charged molecules often tend to collapse in a way that they can expose their porphyrin core. Contrarily, positively charged moieties tend to take more extended molecular configurations blocking the core. Further, sudden changes in the charge states emulating the pH alterations in solution conditions lead to rapid, sub-10 ns level, changes in the molecular conformation of [5]rotaxane via shuttling motion of CB6 rings along axles. Finally, simulations of 2D [5]rotaxane network structures support our previous findings on a few nanometer-thick film formation at oil-water interfaces. Overall, our results suggest that rotaxane-based structures can exhibit a rich spectrum of molecular configurations and kinetics depending on the ionic strength of the solution.
Collapse
Affiliation(s)
- Ata Utku Özkan
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara06800, Turkey
| | - Dönüş Tuncel
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara06800, Turkey,Department
of Chemistry, Bilkent University, Ankara06800, Turkey
| | - Aykut Erbaş
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara06800, Turkey,E-mail:
| |
Collapse
|
4
|
Kashapov RR, Razuvayeva YS, Lukashenko SS, Amerhanova SK, Lyubina AP, Voloshina AD, Syakaev VV, Salnikov VV, Zakharova LY. Supramolecular Self-Assembly of Porphyrin and Metallosurfactant as a Drug Nanocontainer Design. NANOMATERIALS 2022; 12:nano12121986. [PMID: 35745324 PMCID: PMC9228287 DOI: 10.3390/nano12121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022]
Abstract
The combined method of treating malignant neoplasms using photodynamic therapy and chemotherapy is undoubtedly a promising and highly effective treatment method. The development and establishment of photodynamic cancer therapy is closely related to the creation of sensitizers based on porphyrins. The present study is devoted to the investigation of the spectroscopic, aggregation, and solubilization properties of the supramolecular system based on 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) and lanthanum-containing surfactant (LaSurf) in an aqueous medium. The latter is a complex of lanthanum nitrate and two cationic amphiphilic molecules of 4-aza-1-hexadecylazoniabicyclo[2.2.2]octane bromide. The mixed TSPP–LaSurf complexes can spontaneously assemble into various nanostructures capable of binding the anticancer drug cisplatin. Morphological behavior, stability, and ability to drug binding of nanostructures can be tailored by varying the molar ratio and the concentration of components. The guest binding is shown to be additional factor controlling structural rearrangements and properties of the supramolecular TSPP–LaSurf complexes.
Collapse
Affiliation(s)
- Ruslan R. Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
- Correspondence: ; Tel.: +7-(843)-273-22-93
| | - Yuliya S. Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Svetlana S. Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Victor V. Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| |
Collapse
|
5
|
Pearce N, Reynolds KEA, Kayal S, Sun XZ, Davies ES, Malagreca F, Schürmann CJ, Ito S, Yamano A, Argent SP, George MW, Champness NR. Selective photoinduced charge separation in perylenediimide-pillar[5]arene rotaxanes. Nat Commun 2022; 13:415. [PMID: 35058440 PMCID: PMC8776946 DOI: 10.1038/s41467-022-28022-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to control photoinduced charge transfer within molecules represents a major challenge requiring precise control of the relative positioning and orientation of donor and acceptor groups. Here we show that such photoinduced charge transfer processes within homo- and hetero-rotaxanes can be controlled through organisation of the components of the mechanically interlocked molecules, introducing alternative pathways for electron donation. Specifically, studies of two rotaxanes are described: a homo[3]rotaxane, built from a perylenediimide diimidazolium rod that threads two pillar[5]arene macrocycles, and a hetero[4]rotaxane in which an additional bis(1,5-naphtho)-38-crown-10 (BN38C10) macrocycle encircles the central perylenediimide. The two rotaxanes are characterised by a combination of techniques including electron diffraction crystallography in the case of the hetero[4]rotaxane. Cyclic voltammetry, spectroelectrochemistry, and EPR spectroscopy are employed to establish the behaviour of the redox states of both rotaxanes and these data are used to inform photophysical studies using time-resolved infra-red (TRIR) and transient absorption (TA) spectroscopies. The latter studies illustrate the formation of a symmetry-breaking charge-separated state in the case of the homo[3]rotaxane in which charge transfer between the pillar[5]arene and perylenediimide is observed involving only one of the two macrocyclic components. In the case of the hetero[4]rotaxane charge separation is observed involving only the BN38C10 macrocycle and the perylenediimide leaving the pillar[5]arene components unperturbed.
Collapse
Affiliation(s)
- Nicholas Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Surajit Kayal
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Xue Z Sun
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - E Stephen Davies
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ferdinando Malagreca
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | - Sho Ito
- Rigaku Corporation, 3-9-12, Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12, Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Michael W George
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Cheong Tse Y, Hein R, Mitchell EJ, Zhang Z, Beer PD. Halogen-Bonding Strapped Porphyrin BODIPY Rotaxanes for Dual Optical and Electrochemical Anion Sensing. Chemistry 2021; 27:14550-14559. [PMID: 34319624 PMCID: PMC8596797 DOI: 10.1002/chem.202102493] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/13/2022]
Abstract
Anion receptors employing two distinct sensory mechanisms are rare. Herein, we report the first examples of halogen-bonding porphyrin BODIPY [2]rotaxanes capable of both fluorescent and redox electrochemical sensing of anions. 1 H NMR, UV/visible and electrochemical studies revealed rotaxane axle triazole group coordination to the zinc(II) metalloporphyrin-containing macrocycle component, serves to preorganise the rotaxane binding cavity and dramatically enhances anion binding affinities. Mechanically bonded, integrated-axle BODIPY and macrocycle strapped metalloporphyrin motifs enable the anion recognition event to be sensed by the significant quenching of the BODIPY fluorophore and cathodic perturbations of the metalloporphyrin P/P+. redox couple.
Collapse
Affiliation(s)
- Yuen Cheong Tse
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Robert Hein
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Edward J. Mitchell
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
7
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
8
|
Martinez-Bulit P, Wilson BH, Loeb SJ. One-pot synthesis of porphyrin-based [5]rotaxanes. Org Biomol Chem 2020; 18:4395-4400. [PMID: 32463405 DOI: 10.1039/d0ob00906g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot reaction is used to make a series of [5]rotaxanes. The protocol involves simultaneous threading-followed-by-stoppering to trap a macrocycle (dibenzo[24]crown-8, DB24C8) on an axle to form a mechanically interlocked molecule (MIM) - in this case a rotaxane - and the condensation of an aldehyde with a pyrrole to form a porphyrin precursor. For each [5]rotaxane, a different combination of recognition site and stoppering group was used; the protonation state of the [5]rotaxane can be used to generate different co-conformational states for each [5]rotaxane making these systems potential multi-state switches for further study in solution or the solid-state.
Collapse
Affiliation(s)
- Pablo Martinez-Bulit
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Benjamin H Wilson
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
9
|
Self-assembly of Cu(I) metallomacrocycle and coordination polymers with 2,2′:5′,4″-terpyridine directed by anions and solvents. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|