1
|
Li MY, Chen P, Pan MX, Hu HL, Jiang YJ. Palladium-catalyzed amidation of carbazole derivatives via hydroamination of isocyanates. Org Biomol Chem 2024. [PMID: 39005158 DOI: 10.1039/d4ob00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The first amidation of carbazoles at the N9 position via palladium-catalyzed hydroamination of isocyanates is demonstrated. This simple, general and efficient method could deliver a wide range of carbazole-N-carboxamides in up to 99% yield. The salient features of this transformation include simple conditions with no need for a strong base, high chemo- and regio-selectivities and good functional group tolerance. In particular, this work-up-free and chromatography-free protocol is time-saving, cost-effective and user-friendly.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Peng Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ming-Xia Pan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hao-Lan Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yi-Jun Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Shinde J, Patil PB, Kavala V, Yao CF. Synthesis of unsymmetrical urea derivatives via Cu-catalysed reaction of acylazide and secondary amine. Chem Biodivers 2022; 19:e202200346. [PMID: 35773778 DOI: 10.1002/cbdv.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
The synthesis of unsymmetrical urea generally requires toxic reagent, solvent and harsh reaction condition. Herein, we introduce Cu-catalyzed greener and safer unsymmetrical urea derivatives synthesis in ethyl acetate. This method minimized utilization of toxic reagent. A variety of indole, amines, and azides with bis-indole successfully employed leading to high yields and gram scale synthesis of isolated urea.
Collapse
Affiliation(s)
- Jivan Shinde
- National Taiwan Normal University College of Science, Chemistry, No. 88, Section 4, Tingzhou Road, Wenshan District, Taipei City, 116, 116, Taipei City,, TAIWAN
| | - Prakash Bhimrao Patil
- National Taiwan Normal University College of Science, Chemistry, No. 88, Section 4, Tingzhou Road, Wenshan District, Taipei City, 116, 116, Taipei City,, TAIWAN
| | - Veerababurao Kavala
- National Taiwan Normal University College of Science, Chemistry, No. 88 section 4, Tingzhou Road, Taipei, TAIWAN
| | - Ching-Fa Yao
- National Taiwan Normal University, Department of Chemistry, 88, Sec. 4, Tingchow Road, 116, Taipei, TAIWAN
| |
Collapse
|
3
|
Dasgupta A, Guerzoni MG, Alotaibi N, van Ingen Y, Farshadfar K, Richards E, Ariafard A, Melen RL. Chemo- and regio-selective amidation of indoles with isocyanates using borane Lewis acids. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free synthetic route using boranes has been developed for the amidation of indoles. A detailed mechanistic study was carried out to understand the reaction mechanism.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Michael G. Guerzoni
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Nusaybah Alotaibi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, 1469669191, Iran
- Research Group of Computational Chemistry, Department of Chemistry and Materials Science, Aalto University, FI-00076 Aalto, Finland
| | - Emma Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Alireza Ariafard
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| |
Collapse
|
4
|
Yuan B, Wan J, Guo X, Gong Y, Zhang F, Li Q, Wang G, Chen J, He R. Theoretical investigation on the Cu(i)-catalyzed N-carboxamidation of indoles with isocyanates to form indole-1-carboxamides: effects of solvents. NEW J CHEM 2020. [DOI: 10.1039/d0nj01116a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvents act as the hydrogen-bond acceptor to facilitate intermolecular addition, and then play the proton-shuttle to assist H1+-shift. The stronger electron-donating property of solvent is favorable for the present Cu(i)-catalyzed reactions.
Collapse
Affiliation(s)
- Binfang Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Jingwei Wan
- Department of Criminal Science and Technology
- Railway Police College
- Zhengzhou
- China
| | - Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yongmi Gong
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Fulan Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Qing Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Guangzhao Wang
- Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing
- School of Electronic Information Engineering
- Yangtze Normal University
- Chongqing 408100
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Rongxing He
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|