1
|
Hao X, Tian Z, Yao Z, Zang T, Song S, Lin L, Qiao T, Huang L, Fu H. Atroposelective Synthesis of Axial Biaryls by Dynamic Kinetic Resolution Using Engineered Imine Reductases. Angew Chem Int Ed Engl 2024; 63:e202410112. [PMID: 39016184 DOI: 10.1002/anie.202410112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
Axially chiral biaryl compounds are ubiquitous scaffolds in natural products, bioactive molecules, chiral ligands and catalysts, but biocatalytic methods for their asymmetric synthesis are limited. Herein, we report a highly efficient biocatalytic route for the atroposelective synthesis of biaryls by dynamic kinetic resolution (DKR). This DKR approach features a transient six-membered aza-acetal-bridge-promoted racemization followed by an imine reductase (IRED)-catalyzed stereoselective reduction to construct the axial chirality under ambient conditions. Directed evolution of an IRED from Streptomyces sp. GF3546 provided a variant (S-IRED-Ss-M11) capable of catalyzing the DKR process to access a variety of biaryl aminoalcohols in high yields and excellent enantioselectivities (up to 98 % yield and >99 : 1 enantiomeric ratio). Molecular dynamics simulation studies on the S-IRED-Ss-M11 variant revealed the origin of its improved activity and atroposelectivity. By exploiting the substrate promiscuity of IREDs and the power of directed evolution, our work further extends the biocatalysts' toolbox to construct challenging axially chiral molecules.
Collapse
Affiliation(s)
- Xinyue Hao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuangfei Tian
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhouchang Yao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tienan Zang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shucheng Song
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Lin
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14850, United States
| | - Ling Huang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haigen Fu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Rodríguez-Salamanca P, de Gonzalo G, Carmona JA, López-Serrano J, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. Biocatalytic Atroposelective Synthesis of Axially Chiral N-Arylindoles via Dynamic Kinetic Resolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c06175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patricia Rodríguez-Salamanca
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Watts OB, Berreur J, Collins BSL, Clayden J. Biocatalytic Enantioselective Synthesis of Atropisomers. Acc Chem Res 2022; 55:3362-3375. [PMID: 36343339 PMCID: PMC9730853 DOI: 10.1021/acs.accounts.2c00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atropisomeric compounds are found extensively as natural products, as ligands for asymmetric transition-metal catalysis, and increasingly as bioactive and pharmaceutically relevant targets. Their enantioselective synthesis is therefore an important ongoing research target. While a vast majority of known atropisomeric structures are (hetero)biaryls, which display hindered rotation around a C-C single bond, our group's long-standing interest in the control of molecular conformation has led to the identification and stereoselective preparation of a variety of other classes of "nonbiaryl" atropisomeric compounds displaying restricted rotation around C-C, C-N, C-O, and C-S single bonds.Biocatalytic transformations are finding increasing application in both academic and industrial contexts as a result of a significant broadening of the range of biocatalytic reactions and sources of enzymes available to the synthetic chemist. In this Account, we summarize the main biocatalytic strategies currently available for the asymmetric synthesis of biaryl, heterobiaryl, and nonbiaryl atropisomers. As is the case with more traditional synthetic approaches to these compounds, most biocatalytic methodologies for the construction of enantioenriched atropisomers follow one of two distinct strategies. The first of these is the direct asymmetric construction of atropisomeric bonds. Synthetically applicable biocatalytic methodologies for this type of transformation are limited, despite the extensive research into the biosynthesis of (hetero)biaryls by oxidative homocoupling or cross-coupling of electron-rich arenes. The second of these is the asymmetric transformation of a molecule in which the bond that will form the axis already exists, and this approach represents the majority of biocatalytic strategies available to the synthetic organic chemist. This strategy encompasses a variety of stereoselective techniques including kinetic resolution (KR), desymmetrization, dynamic kinetic resolution (DKR), and dynamic kinetic asymmetric transformation (DYKAT).Nondynamic kinetic resolution (KR) of conformationally stable biaryl derivatives has provided the earliest and most numerous examples of synthetically useful methodologies for the enantioselective preparation of atropisomeric compounds. Lipases (i.e., enzymes that mediate the formation or hydrolysis of esters) are particularly effective and have attracted broad attention. This success has led researchers to broaden the scope of lipase-mediated transformations to desymmetrization reactions, in addition to a limited number of DKR and DYKAT examples. By contrast, our group has used redox enzymes, including an engineered galactose oxidase (GOase) and commercially available ketoreductases (KREDs), to desymmetrize prochiral atropisomeric diaryl ether and biaryl derivatives. Building on this experience and our long-standing interest in dynamic conformational processes, we later harnessed intramolecular noncovalent interactions to facilitate bond rotation at ambient temperatures, which allowed the development of the efficient DKR of heterobiaryl aldehydes using KREDs. With this Account we provide an overview of the current and prospective biocatalytic strategies available to the synthetic organic chemist for the enantioselective preparation of atropisomeric molecules.
Collapse
|
5
|
Kasama K, Hinami Y, Mizuno K, Horino S, Nishio T, Yuki C, Kanomata K, Moustafa GAI, Gröger H, Akai S. Lipase-Catalyzed Kinetic Resolution of <i>C</i><sub>1</sub>-Symmetric Heterocyclic Biaryls. Chem Pharm Bull (Tokyo) 2022; 70:391-399. [DOI: 10.1248/cpb.c22-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kengo Kasama
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yuya Hinami
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Karin Mizuno
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Satoshi Horino
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tomoya Nishio
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Chiharu Yuki
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
6
|
Koszelewski D, Brodzka A, Madej A, Trzepizur D, Ostaszewski R. Evaluation of gem-Diacetates as Alternative Reagents for Enzymatic Regio- and Stereoselective Acylation of Alcohols. J Org Chem 2021; 86:6331-6342. [PMID: 33861083 DOI: 10.1021/acs.joc.1c00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Geminal diacetates have been used as sustainable acyl donors for enzymatic acylation of chiral and nonchiral alcohols. Especially, it was revealed that geminal diacetates showed higher reactivity than vinyl acetate for hydrolases that are sensitive to acetaldehyde. Under optimized conditions for enzymatic acylation, several synthetically relevant saturated and unsaturated acetates of various primary alcohols were obtained in very high yields up to 98% without E/Z isomerization of the double bond. Subsequently, the acyl donor was recreated from the resulting aldehyde and reused constantly in acylation. Therefore, the developed process is characterized by high atomic efficiency. Moreover, it was shown that acylation using geminal diacetates resulted in remarkable regioselectivity by discriminating among the primary and secondary hydroxyl groups in 1-phenyl-1,3-propanediol providing exclusively 3-acetoxy-1-phenyl-propan-1-ol in good yield. Further, enzymatic kinetic resolution (EKR) and chemoenzymatic dynamic kinetic resolution (DKR) protocols were developed using geminal diacetate as an acylating agent, resulting in chiral acetates in high yields up to 94% with enantiomeric excesses exceeding 99%.
Collapse
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Arleta Madej
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Damian Trzepizur
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
7
|
Halling PJ. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein J Org Chem 2021; 17:873-884. [PMID: 33968260 PMCID: PMC8077619 DOI: 10.3762/bjoc.17.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping-pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which can be termed ee decline parameter, eeDP) accounts for the major effect on the tendency for the ee to decline. For some mechanisms, the concentrations or ratios of the starting materials have an important influence on the fall in ee. For the application of enzymatic desymmetrisation it is important to study if and how the product ee declines at high conversion.
Collapse
Affiliation(s)
- Peter J Halling
- WestCHEM, Dept Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, UK
| |
Collapse
|
8
|
Mandal S, Pramanik A. Three-Component Synthesis of Pyrrolo/indolo[1,2-a]quinoxalines Substituted with o-Biphenylester/N-arylcarbamate/N-arylurea: A Domino Approach Involving Spirocyclic Ring Opening. J Org Chem 2021; 86:5047-5064. [DOI: 10.1021/acs.joc.0c02973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Subhro Mandal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Animesh Pramanik
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Kasama K, Kanomata K, Hinami Y, Mizuno K, Uetake Y, Amaya T, Sako M, Takizawa S, Sasai H, Akai S. Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium. RSC Adv 2021; 11:35342-35350. [PMID: 35493149 PMCID: PMC9042799 DOI: 10.1039/d1ra07723f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-dehydrogenative coupling between 3-hydroxycarbazoles and 2-naphthols has been achieved by using a mesoporous silica-supported oxovanadium catalyst. Cross-dehydrogenative coupling between 3-hydroxycarbazoles and 2-naphthols has been achieved by using a mesoporous silica-supported oxovanadium catalyst.![]()
Collapse
Affiliation(s)
- Kengo Kasama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuya Hinami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Karin Mizuno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Amaya
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Makoto Sako
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Takizawa S, Sasai H, S. H. Salem M, Kumar A, Sako M, Abe T. Preparation of Optically Pure Dinuclear Cobalt(III) Complex with Λ-Configuration as a Dianionic Chiral Catalyst. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Breaking Molecular Symmetry through Biocatalytic Reactions to Gain Access to Valuable Chiral Synthons. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review the recent reports of biocatalytic reactions applied to the desymmetrization of meso-compounds or symmetric prochiral molecules are summarized. The survey of literature from 2015 up to date reveals that lipases are still the most used enzymes for this goal, due to their large substrate tolerance, stability in different reaction conditions and commercial availability. However, a growing interest is focused on the use of other purified enzymes or microbial whole cells to expand the portfolio of exploitable reactions and the molecular diversity of substrates to be transformed. Biocatalyzed desymmetrization is nowadays recognized as a reliable and efficient approach for the preparation of pharmaceuticals or natural bioactive compounds and many processes have been scaled up for multigram preparative purposes, also in continuous-flow conditions.
Collapse
|
12
|
Cheng D, Shao Y. Advances in the Catalytic Asymmetric Synthesis of Atropisomeric Hexatomic N‐Heterobiaryls. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000354] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dao‐Juan Cheng
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 People's Republic of China
| | - You‐Dong Shao
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 People's Republic of China
| |
Collapse
|