1
|
Singhal R, Choudhary SP, Malik B, Pilania M. I 2/DMSO-mediated oxidative C-C and C-heteroatom bond formation: a sustainable approach to chemical synthesis. RSC Adv 2024; 14:5817-5845. [PMID: 38362068 PMCID: PMC10866128 DOI: 10.1039/d3ra08685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
The I2/DMSO pair has emerged as a versatile, efficient, practical, and eco-friendly catalyst system, playing a significant role as a mild oxidative system, and thus employed as a good alternative to metal catalysts in synthetic chemistry. Presently, I2/DMSO is a thriving catalytic system that is used in preparing C-C and C-X (X = O/S/N/Se/Cl/Br) bonds, resulting in the formation of various bioactive molecules. Many processes utilize this system, including in situ glyoxal synthesis by diverse sp, sp2, and sp3 functionalities via iodination and subsequent Kornblum oxidation. Focusing on oxidation processes, this study examines the synergistic effect of dimethyl sulfoxide (DMSO) and molecular iodine in improving synthetic techniques. We provide a comprehensive overview of the research progress on the I2/DMSO catalytic system for the formation of C-C and C-heteroatom bonds from 2018 to the present. Additionally, the future prospects of this research field are discussed.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| |
Collapse
|
2
|
Patel V, Bambharoliya T, Shah D, Patel Y, Savaliya N, Patel Y, Patel R, Bhavsar V, Patel H, Patel M, Patel A. Recent Progress for the Synthesis of β-Carboline Derivatives – an Update. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2180525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | | | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Yug Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Neel Savaliya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Yash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | | | - Harnisha Patel
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| |
Collapse
|
3
|
Sharma S, Singh D, Kumar S, Vaishali, Jamra R, Banyal N, Deepika, Malakar CC, Singh V. An efficient metal-free and catalyst-free C-S/C-O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides. Beilstein J Org Chem 2023; 19:231-244. [PMID: 36895429 PMCID: PMC9989676 DOI: 10.3762/bjoc.19.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
An operationally simple and metal-free approach is described for the synthesis of pyrazole-tethered thioamide and amide conjugates. The thioamides were generated by employing a three-component reaction of diverse pyrazole C-3/4/5 carbaldehydes, secondary amines, and elemental sulfur in a single synthetic operation. The advantages of this developed protocol refer to the broad substrate scope, metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Dharmender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Central Revenues Control Laboratory, New Delhi-110012, India
| | - Sunit Kumar
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Rahul Jamra
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Naveen Banyal
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deepika
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT) Manipur, Imphal, 795004, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| |
Collapse
|
4
|
Singh M, Vaishali, Jamra R, Deepika, Kumar S, Singh V. Iodine‐Catalysed Synthesis of β‐Carboline Tethered α‐Amino Amidines Through Ugi‐Type Multicomponent Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202202392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Baba Farid Group of Institutions Bathinda Punjab 151001 India
| | - Vaishali
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
| | - Rahul Jamra
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
- Department of Chemistry Central University of Punjab Bathinda Punjab India 151401
| | - Deepika
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
| | - Sunit Kumar
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
| | - Virender Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
- Department of Chemistry Central University of Punjab Bathinda Punjab India 151401
| |
Collapse
|
5
|
Singh M, Jamra. R, Paul AK, Malakar CC, Singh V. KI‐assisted Sulfur Activation/Insertion/Denitration Strategy towards Dual C−S Bond Formation for One‐pot Synthesis of β‐Carboline‐tethered 2‐Acylbenzothiophenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Rahul Jamra.
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab Bathinda 151401 Punjab India
| | - Avijit K. Paul
- Department of Chemistry National Institute of Technology Kurukshetra 136119 Haryana India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Imphal 795004 Manipur India
| | - Virender Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab Bathinda 151401 Punjab India
| |
Collapse
|
6
|
Gharpure SJ, Hande PE, Pandey SK, Samala G. TMSOTf-Mediated Formal [4 + 2] Cycloaddition-Retro-aza-Michael Cascade of Vinylogous Carbamates for the Synthesis of Highly Fluorescent Pyridocarbazoles. J Org Chem 2021; 86:16652-16665. [PMID: 34766500 DOI: 10.1021/acs.joc.1c01927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trimethylsilyl trifluoromethanesulfonate mediated dimerization reaction of vinylogous carbamates of carbazoles gave highly fluorescent pyridocarbazoles through a Povarov-type formal [4 + 2] cycloaddition-retro-aza-Michael cascade. The developed strategy was used to access indolo pyridocarbazole and quinolizinocarbazolone in an expeditious manner. Various coupling reactions were successfully performed on synthesized pyridocarbazoles to study the effect of electronics of substitution on photophysical properties. Synthesized carbazoles possess excellent photophysical properties with high quantum yields (ΦF). Fluorescent carbazole dicarboxylic acid showed potential as a pH probe to give a linear response to pH over a very wide range (7.0-3.0) reflecting high efficiency.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surya K Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ganesh Samala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Singh M, Jamra R, Mehra S, Rattan S, Singh V. Potassium
Tert
‐Butoxide‐Promoted Synthesis of Fluorescent β‐Carboline Tethered 1,3,5‐Triazines and Assessment of Their Luminescent Properties. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
| | - Rahul Jamra
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| | - Saloni Mehra
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Sunita Rattan
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Virender Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| |
Collapse
|
8
|
Kumar S, Malakar CC, Singh V. Cu(II)‐Catalysed Azide‐Alkyne Cycloaddition Reaction towards Synthesis of β‐Carboline C1‐Tethered 1,2,3‐Triazole Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunit Kumar
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology (NIT) Manipur Imphal 795004 India
| | - Virender Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab, Bathinda 151401 Punjab India
| |
Collapse
|
9
|
Zhou XY, Chen X, Liu HL. KI catalyzed C–H functionalization of acetone for the synthesis of 2-oxopropyl hetero-aromatic carboxylates. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1892762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Hai-Long Liu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
10
|
Singh M, Vaishali, Kumar S, Jamra R, Pandey SK, Singh V. A metal-free approach towards synthesis of β-carboline C1 substituted Pyrido(2,3-c)carbazole derivatives (nitramarine analogues) through A3-coupling and estimation of their light emitting properties. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Banoth KK, Faheem, ChandraSekhar KVG, Adinarayana N, Murugesan S. Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heliyon 2020; 6:e04916. [PMID: 32995612 PMCID: PMC7501441 DOI: 10.1016/j.heliyon.2020.e04916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is the most widespread pathogenic disease in several countries. Currently, no effective vaccines are available, and the control of Leishmaniasis primarily relies on decade-old chemotherapy. The treatment for the Leishmaniasis is not up to the mark. Current therapy for Leishmaniasis is ancient and requires hospitalization for the administration. These medications are also highly toxic and resistant. β-carboline, a natural indole containing alkaloid, holds a vital position in the field of medicinal chemistry with a diversified pharmacological action. The current review focuses mainly on the anti-leishmanial effects of β-carboline analogs and their synthetic strategies, structural activity relationship studies (SAR). The past ten years alterations unveiled by β-carboline analogs present in phytoconstituents and various derivatives of synthesized analogs with the mechanism of action were briefly shortlisted and illustrated.
Collapse
Affiliation(s)
- Karan Kumar Banoth
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | | | - Nandikolla Adinarayana
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| |
Collapse
|
12
|
Deng GJ, Huang H, Liu S. Recent Advances in Sulfur-Containing Heterocycle Formation via Direct C–H Sulfuration with Elemental Sulfur. Synlett 2020. [DOI: 10.1055/s-0040-1707217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of sulfur heterocycles via the construction of C–S bonds has received considerable attention due to their biological value and extensive pharmaceutical application. While diverse sulfurating agents have been developed over the past few decades, in this regard, elemental sulfur, with advantages of low toxicity, odorless nature and chemical stability, has great potential for the construction of diverse sulfur heterocycles through its direct incorporation into the target molecules in a concise way. Direct functionalization of inert C–H bonds can shorten the number of reaction steps and minimize the amount of waste formed. Hence, heteroannulations via direct C–H sulfuration is considered to be an attractive strategy for the synthesis of sulfur heterocycles. In the last few years, a vast array of concise systems have been reported for the synthesis of some valuable sulfur heterocycles such as thiophenes, thienoindoles, thienothiazoles, thiazoles, benzothiazoles, and thiadiazoles through direct C–H sulfuration/annulations with elemental sulfur. These are discussed in detail in this review.1 Introduction2 Thiophenes3 Thienoindoles4 Thienothiazoles5 Other Fused Thiophenes6 Thiazoles7 Benzothiazoles8 Thiadiazoles9 Others10 Summary and Outlook
Collapse
Affiliation(s)
- Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| | - Saiwen Liu
- College of Materials and Chemical Engineering, Hunan City University
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| |
Collapse
|
13
|
Singh D, Kumar V, Singh V. Et 3N/DMSO-supported one-pot synthesis of highly fluorescent β-carboline-linked benzothiophenones via sulfur insertion and estimation of the photophysical properties. Beilstein J Org Chem 2020; 16:1740-1753. [PMID: 32765794 PMCID: PMC7385337 DOI: 10.3762/bjoc.16.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023] Open
Abstract
A robust transition-metal-free strategy is presented to access novel β-carboline-tethered benzothiophenone derivatives from 1(3)-formyl-β-carbolines using elemental sulfur activated by Et3N/DMSO. This expeditious catalyst-free reaction proceeds through the formation of β-carboline-based 2-nitrochalcones followed by an incorporation of sulfur to generate multifunctional β-carboline-linked benzothiophenones in good to excellent yields. The synthetic strategy could also be extended towards the synthesis of β-carboline-linked benzothiophenes. Moreover, the afforded products emerged as promising fluorophores and displayed excellent light-emitting properties with quantum yields (ΦF) up to 47%.
Collapse
Affiliation(s)
- Dharmender Singh
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology (NIT), Jalandhar, 144011, Punjab, India
| | - Vipin Kumar
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology (NIT), Jalandhar, 144011, Punjab, India
| | - Virender Singh
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology (NIT), Jalandhar, 144011, Punjab, India
- Department of Chemistry, Central University of Punjab, Bathinda, 151001, Punjab, India
| |
Collapse
|
14
|
Nguyen TB. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances NaturellesCNRS UPR 2301Université Paris-SudUniversité Paris-Saclay 1, avenue de la Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
15
|
Singh M, Vaishali, Paul AK, Singh V. Isatin as a 2-aminobenzaldehyde surrogate: transition metal-free efficient synthesis of 2-(2'-aminophenyl)benzothiazole derivatives. Org Biomol Chem 2020; 18:4459-4469. [PMID: 32490470 DOI: 10.1039/d0ob00888e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free, convenient, and efficient practical approach has been devised for the synthesis of substituted 2-(2'-aminophenyl)benzothiazoles via a sulfur insertion strategy using isatin derivatives as 2-aminobenzaldehyde surrogates. KI assisted one-pot operation of isatin, arylamines and elemental sulfur resulted in the formation of a C-N and two C-S bonds and cascade cleavage of the isatin ring resulting in the formation of 2-(2'-aminophenyl)benzothiazoles. The significant features of this strategy are the readily available and inexpensive starting materials, broad substrate scope, sustainable reaction conditions and high yield of products. Importantly, the strategy was found to be appropriate for gram scale synthesis (>10 g) of 2-(2'-aminophenyl)benzothiazole derivatives. Moreover, the excellent photophysical properties (ΦF up to 60%) of 2-(2'-aminophenyl)benzothiazole derivatives provide huge scope in materials science.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, 136119, Haryana, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India. and Department of Chemistry, Central University of Punjab, Bathinda, 151001, Punjab, India. virender.singh.cup.edu.in
| |
Collapse
|
16
|
Singh M, Vaishali, Kumar R, Singh V. Catalyst‐Free and Metal‐Free Approach towards Synthesis of Amide‐ and Thioamide‐Linked β‐Carboline‐Pyridine Conjugates and Estimation of Their Photophysical Properties. ChemistrySelect 2020. [DOI: 10.1002/slct.202001149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manpreet Singh
- Department of ChemistryDr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Vaishali
- Department of ChemistryDr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Rakesh Kumar
- Department of ChemistryDr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Virender Singh
- Department of ChemistryDr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| |
Collapse
|
17
|
Singh M, Paul AK, Singh V. A transition metal-free approach towards the regioselective synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1 H-pyrroles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02315a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A transition metal-free one-pot sequential approach has been unfolded for the synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1H-pyrroles by using highly diverse 1-formyl-9H-β-carbolines as a template.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology Kurukshetra
- India
| | - Virender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
- Department of Chemistry
| |
Collapse
|