1
|
Huang R, Gao M, Yang Z, Han W, Wei Z, Li Z, Xu B. 1,3-Difunctionalization of Donor-Acceptor Cyclopropanes Enabled by Copper Nitrate: A Direct Approach to γ-Halonitrates. Org Lett 2024. [PMID: 39481081 DOI: 10.1021/acs.orglett.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
1,3-Difunctionalization of donor-acceptor cyclopropanes with copper nitrate and N-halosuccinimide was developed to efficiently afford γ-halonitrates. The pivotal factor of this protocol lies in the dual role of copper nitrate as a Lewis acid and an ideal nitrooxy source. The given approach features easy handling, good functional group compatibility, and wide substrate scope. Furthermore, various transformations of the obtained γ-chloronitrates underscore the remarkable synthetic potential inherent in this method.
Collapse
Affiliation(s)
- Ruoxin Huang
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Mingchun Gao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhenkun Yang
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Wanghao Han
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ziqiang Wei
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhen Li
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
2
|
Lv Y, Hao J, Huang J, Song L, Yue H, Wei W, Yi D. Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO. Chem Commun (Camb) 2024; 60:9801-9804. [PMID: 39162090 DOI: 10.1039/d4cc03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A metal-free and sustainable visible-light-mediated method for the preparation of organic nitrate esters has been developed through the aerobic nitrooxylation reaction of α-diazoesters and cyclic ethers with t-BuONO in the presence of dioxygen. This protocol provides an efficient approach to access nitrate esters with the advantages of clean energy, broad substrate scope, green oxidants, operational simplicity, and mild conditions.
Collapse
Affiliation(s)
- Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Lianhui Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 81000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China.
| |
Collapse
|
3
|
Ren S, Zhu J, Liu Y. Trifunctionalization of CC bonds in vinyl azides to access densely functionalized phenanthridines enabled by the NCS/AgNO 2 system. Org Biomol Chem 2024; 22:5982-5986. [PMID: 38984917 DOI: 10.1039/d4ob00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
An unprecedented trifunctionalization of CC bonds in 2-(1-azidovinyl)-1,1'-biphenyls has been successfully achieved using the NCS/AgNO2 system, leading to the preparation of 6-(dichloro(nitro)methyl)phenanthridines in moderate to good yields. In this process, the NCS/AgNO2 system serves as a NO2 radical initiator as well as a chloro group source. The present protocol is a rare example of the selective construction of densely functionalized phenanthridine derivatives in a one-pot manner.
Collapse
Affiliation(s)
- Shaobo Ren
- College of Pharmacy, Jinhua Polytechnic, Jinhua, 321007, P. R. China.
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Jian Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
4
|
Chen Y, Zhang S, Li T, Ma Q, Yuan Y, Jia X. Oxidants Controlled C-H Bond Functionalization of N-Aryltetrahydroisoquinolines: The Construction of the Quaternary Carbon Center and Cleavage of the C-N Bond. Chemistry 2024; 30:e202303151. [PMID: 37875461 DOI: 10.1002/chem.202303151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
5
|
Sun Z, Zhang S, Ma Q, Li Y, Ding H, Yuan Y, Jia X. Tert-Butyl Nitrite-initiated C-N Bond Cleavage of 1-Nitromethyl-N-aryltetrahydroisoquinolines: Synthesis of Furoxans with N-NO Skeleton. Chem Asian J 2023; 18:e202201265. [PMID: 36655414 DOI: 10.1002/asia.202201265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
A series of furoxan derivatives with N-nitroso groups were synthesized in good yields by TBN initiated radical sp3 C-N bond cleavage of 1-nitromethyl-N-aryltetrahydroisoquinolines. This reaction grafts the biologically important furoxan skeleton and N-nitroso group into on molecule, greatly improving the molecular complexity in one step transformation. The mechanistic study shows that this reaction is mediated by the in situ generated α-carbonyl nitrile oxide, which is afforded by TBN promoted C-N bond cleavage.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Han Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
6
|
Zeng YF, Wu JB, Chen JT, Guo Y, Wang Z. Oxidative functionalization of alkylidenecyclopropanes and alkylidenecyclobutanes: a versatile platform to access nitrated cyclopropanes and cyclobutanes. Org Biomol Chem 2022; 20:7022-7026. [PMID: 36006008 DOI: 10.1039/d2ob01426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A divergent radical nitration of alkylidenecyclopropanes (ACPs) and alkylidenecyclobutanes (ACBs) with Fe(NO3)3·9H2O or AgNO2 has been achieved, affording three categories of products including β-nitro alcohol, α-nitro ketone and nitro nitratosation products with yields up to 90%. Particularly, the cyclopropyl and cyclobutyl rings were conserved in the products. The applicability of this method was demonstrated by the scale-up experiment and reduction of the nitro into an amino group. Preliminary mechanistic studies suggested that the nitro radical was involved in the reaction process.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Tao Chen
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
8
|
Catalyst-free nitration of the aliphatic C-H bonds of tertiary β-keto esters with tert-butyl nitrite: access to α-quaternary α-amino acid precursors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Jia L, Li L, Han F, Hu X. Water-mediated decarboxylative radical nitrosation of β-keto acids with tert-butyl nitrite: access to α-oximino ketones. NEW J CHEM 2022. [DOI: 10.1039/d2nj04175h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A practical catalyst-free decarboxylative radical nitrosation system of β-keto acids with tert-butyl nitrite in water has been described.
Collapse
Affiliation(s)
- Lina Jia
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar 161006, China
| | - Linlin Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Fuzhong Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar 161006, China
| | - Xiangping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Li YN, Li XL, Wu JB, Jiang H, Liu Y, Guo Y, Zeng YF, Wang Z. Metal-free regioselective nitration of quinoxalin-2(1 H)-ones with tert-butyl nitrite. Org Biomol Chem 2021; 19:10554-10559. [PMID: 34854446 DOI: 10.1039/d1ob02015c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free coupling of quinoxalin-2(1H)-ones with tert-butyl nitrite has been developed. Distinctly from the previous functionalization of quinoxalin-2(1H)-ones, this nitration reaction took place selectively at the C7 or C5 position of the phenyl ring, affording a series of 7-nitro and 5-nitro quinoxalin-2(1H)-ones in moderate to good yields. Preliminary mechanistic studies revealed that the reaction may involve a radical process.
Collapse
Affiliation(s)
- Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue-Lin Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong Jiang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yunmei Liu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
11
|
Lv M, Li X. Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingjun Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Li B, Cheng X, Guan ZY, Li SY, Huo T, Cheng G, Fan YH, Zhou FS, Deng QH. Zinc-catalyzed asymmetric nitrooxylation of β-keto esters/amides with a benziodoxole-derived nitrooxy transfer reagent. Org Chem Front 2020. [DOI: 10.1039/d0qo01022g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc-catalyzed asymmetric nitrooxylation to afford a series of α-nitrooxy β-keto esters/amides in high yields and with low to moderate enantioselectivities has been disclosed.
Collapse
Affiliation(s)
- Bin Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Xuan Cheng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Zhen-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Si-Yuan Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Tao Huo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Guo Cheng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Yan-Hui Fan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Fang-Shuai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| |
Collapse
|