1
|
Meinert H, Oehlschläger F, Cziegler C, Rockstroh J, Marzuoli I, Bisagni S, Lalk M, Bayer T, Iding H, Bornscheuer UT. Efficient Enzymatic Synthesis of Carbamates in Water Using Promiscuous Esterases/Acyltransferases. Angew Chem Int Ed Engl 2024; 63:e202405152. [PMID: 38739413 DOI: 10.1002/anie.202405152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Biocatalysis provides an attractive approach to facilitate synthetic reactions in aqueous media. Motivated by the discovery of promiscuous aminolysis activity of esterases, we exploited the esterase from Pyrobaculum calidifontis VA1 (PestE) for the synthesis of carbamates from different aliphatic, aromatic, and arylaliphatic amines and a set of carbonates such as dimethyl-, dibenzyl-, or diallyl carbonate. Thus, aniline and benzylamine derivatives, aliphatic and even secondary amines could be efficiently converted into the corresponding benzyloxycarbonyl (Cbz)- or allyloxycarbonyl (Alloc)-protected products in bulk water, with (isolated) yields of up to 99 %.
Collapse
Affiliation(s)
- Hannes Meinert
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Florian Oehlschläger
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Clemens Cziegler
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Jan Rockstroh
- Dept. of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Irene Marzuoli
- Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., Grenzacher Str. 124, 4070, Basel, Switzerland
| | - Serena Bisagni
- Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., Grenzacher Str. 124, 4070, Basel, Switzerland
| | - Michael Lalk
- Dept. of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Thomas Bayer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hans Iding
- Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., Grenzacher Str. 124, 4070, Basel, Switzerland
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
2
|
Fernandes RA, Choudhary P, Khatun GN. Chiral Pool Meets Chiral Catalysis: Eight-Step Convergent Total Synthesis of Anticancer Natural Lipid Mycalol. J Org Chem 2023; 88:17389-17397. [PMID: 38008913 DOI: 10.1021/acs.joc.3c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
An exemplary blend of chiral pool with chiral catalysis is exhibited in an eight-step (longest) convergent asymmetric total synthesis of mycalol, which is a promising anticancer natural lipid from a marine source. The polyhydroxy lipid is constructed by using four blocks, and two of which are derived from the chiral pool (d-mannitol and d-gluconolactone) and the other two by chiral catalysis (Sharpless epoxidation and Keck allylation). Alkylation and metathesis were used to knit the blocks in an excellent display of a modular convergent eight-step synthesis. The modular excess will enable rapid analogue generation as revealed by the convenient synthesis of 4-epi-mycalol similarly in an eight-step sequence.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Priyanka Choudhary
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Gulenur N Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
3
|
Noël N, Duchateau S, Messire G, Massicot F, Vasse JL, Villaume S, Aziz A, Dorey S, Crouzet J, Behr JB. Protecting-group free synthesis of glycoconjugates displaying dual fungicidal and plant defense-eliciting activities. Bioorg Chem 2023; 141:106829. [PMID: 37690319 DOI: 10.1016/j.bioorg.2023.106829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
A straightforward synthesis of carbohydrate templated isoxazolidines is described, by reaction of unprotected glycosylhydroxylamines (operating as 1,3-dipoles) with methyl acrylate using microwave activation. Rhamno- and erythro-isoxazolidines are recognized by plant cells, resulting in a strong ROS-production as a plant immune response, and exert a high antifungal activity against Botrytis cinerea.
Collapse
Affiliation(s)
- Nathan Noël
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, 51687 Reims, France
| | - Simon Duchateau
- Université de Reims Champagne Ardenne, RIBP-USC INRAE 1488, 51100 Reims, France
| | - Gatien Messire
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, 51687 Reims, France
| | - Fabien Massicot
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, 51687 Reims, France
| | - Jean-Luc Vasse
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, 51687 Reims, France
| | - Sandra Villaume
- Université de Reims Champagne Ardenne, RIBP-USC INRAE 1488, 51100 Reims, France
| | - Aziz Aziz
- Université de Reims Champagne Ardenne, RIBP-USC INRAE 1488, 51100 Reims, France
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP-USC INRAE 1488, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP-USC INRAE 1488, 51100 Reims, France.
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, 51687 Reims, France.
| |
Collapse
|
4
|
Arnodo D, De Nardo E, Ghinato S, Baldino S, Blangetti M, Prandi C. A Mild, Efficient and Sustainable Tetrahydropyranylation of Alcohols Promoted by Acidic Natural Deep Eutectic Solvents. CHEMSUSCHEM 2023; 16:e202202066. [PMID: 36459165 DOI: 10.1002/cssc.202202066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A straightforward protocol to promote the tetrahydropyranylation of alcohols, using for the first time bioinspired acidic natural deep eutectic solvents (NADESs) as non-innocent reaction media under mild reaction conditions, was reported. This approach enables the preparation of several tetrahydropyranyl (THP) ethers starting from primary, secondary and tertiary alcohols in short reaction times and with high levels of chemoselectivity, working under air and without the need of additional catalyst. The sustainability of the methodology was further highlighted by its scalability and the easy recyclability of the NADES, allowing multigram preparations of THP ethers without any loss of the catalytic activity of the reaction media up to ten recycling steps. Telescoped, one-pot tetrahydropyranylation/nucleophilic acyl substitution transformations using the same eutectic mixture were also demonstrated.
Collapse
Affiliation(s)
- Davide Arnodo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Eugenio De Nardo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Simone Ghinato
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Salvatore Baldino
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| |
Collapse
|
5
|
Kimishima A, Ando H, Sennari G, Noguchi Y, Sekikawa S, Kojima T, Ohara M, Watanabe Y, Inahashi Y, Takada H, Sugawara A, Matsumaru T, Iwatsuki M, Hirose T, Sunazuka T. Chemical Degradation-Inspired Total Synthesis of the Antibiotic Macrodiolide, Luminamicin. J Am Chem Soc 2022; 144:23148-23157. [DOI: 10.1021/jacs.2c10856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aoi Kimishima
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyasu Ando
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Goh Sennari
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiko Noguchi
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shogo Sekikawa
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toru Kojima
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Motoyoshi Ohara
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirokazu Takada
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akihiro Sugawara
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takanori Matsumaru
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
6
|
Holmstedt S, Efimov A, Candeias NR. O,O-Silyl Group Migrations in Quinic Acid Derivatives: An Opportunity for Divergent Synthesis. Org Lett 2021; 23:3083-3087. [PMID: 33826343 DOI: 10.1021/acs.orglett.1c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The O,O-silyl group migrations on a quinic acid-derived cyclitol have been studied, and the ease of migration was observed to be dependent on the silicon substituents and reaction conditions. Conditions were found to improve the formation of a main isomer during the O,O-silyl group migrations that could be integrated into the formal synthesis of vitamin D receptor modulator VS-105 and in the first total synthesis of a metabolite from the African ant Crematogaster nigriceps.
Collapse
Affiliation(s)
- Suvi Holmstedt
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Alexander Efimov
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Gangani AJ, Kumar P, Fernandes RA. Concise Stereoselective Synthesis of β-Hydroxy-γ-lactones: (4 R,5 R)-4-Hydroxy-γ-decalactone from the Japanese Orange Fly and Enantiomers of Arachnid Harvestmen Isolates. JOURNAL OF NATURAL PRODUCTS 2021; 84:120-125. [PMID: 33390009 DOI: 10.1021/acs.jnatprod.0c01207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The naturally occurring (4R,5R)-4-hydroxy-γ-decalactone from the Japanese orange fly and the antipode of (4S,5R)-4-hydroxy-γ-dodecalactone from the harvestmen arachnid and their stereoisomers are synthesized from the chiral pool material d-glucono-δ-lactone in a few steps. The one-pot conversion of the latter to γ-vinyl-β-hydroxy-γ-lactone, cross-metathesis with requisite olefin, and hydrogenation enabled the synthesis of syn-lactones in just a two-pot operation. An additional efficient Pd-catalyzed allylic isomerization of γ-vinyl-β-hydroxy-γ-lactone led to the anti-lactones in high yields.
Collapse
Affiliation(s)
- Ashvin J Gangani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| |
Collapse
|