1
|
Moniwa H, Shintani R. Nucleophilic Substitution at Unactivated Arene C-H: Copper-Catalyzed anti-Selective Silylative Cyclization of Substituted Benzylacetylenes. Org Lett 2025; 27:1763-1768. [PMID: 39945404 DOI: 10.1021/acs.orglett.5c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A new mode of carbon-carbon bond formation via electrophilic activation of a C-H bond has been developed in the context of a copper-catalyzed anti-selective silylative cyclization of benzylacetylenes with silylboronates for the synthesis of 2-silyl-1H-indenes. The reaction proceeds with high regioselectivity for various substituted benzylacetylenes, and the resulting products could be further functionalized. The arene that undergoes cyclization acts as an electrophile with the release of hydride under redox neutral conditions, and the reaction mechanism was probed by the deuterium-labeling experiments and the density functional theory calculations.
Collapse
Affiliation(s)
- Hirokazu Moniwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Ma Y, Pan Q, Ou C, Cai Y, Ma X, Liu C. Aryl sulfonyl fluoride synthesis via organophotocatalytic fluorosulfonylation of diaryliodonium salts. Org Biomol Chem 2023; 21:7597-7601. [PMID: 37676649 DOI: 10.1039/d3ob01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mild and efficient synthesis of various aryl sulfonyl fluorides from diaryliodonium salts under organophotocatalysis via a radical sulfur dioxide insertion and fluorination strategy is presented. Diaryliodonium salts are used as aryl radical precursors, the 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfonyl source and cheap KHF2 as a desirable fluorine source, respectively. Notably, the electronic properties of substituents on the aromatic rings in diaryliodonium salts have a significant influence on the reaction yields.
Collapse
Affiliation(s)
- Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Qijun Pan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Chen Q, You J, Tian T, Li Z, Kashihara M, Mori H, Nishihara Y. Nickel-Catalyzed Decarbonylative Reductive Alkylation of Aroyl Fluorides with Alkyl Bromides. Org Lett 2022; 24:9259-9263. [PMID: 36516299 DOI: 10.1021/acs.orglett.2c03823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper describes the nickel-catalyzed reductive alkylation of aroyl fluorides with alkyl bromides in a decarbonylative manner. In this reaction, various functional groups are well tolerated and the C(sp2)-C(sp3) bond can be constructed directly without the use of organometallic reagents. The present reaction is a cross-electrophile coupling via the radical pathway, affording the corresponding alkylarenes in moderate to good yields.
Collapse
Affiliation(s)
- Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Jingwen You
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Tian Tian
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Myuto Kashihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Tanaka K, Hashimoto Y, Morita N, Tamura O. Directing-Group-Free Palladium-Catalyzed C–H Arylation of Aldoxime Using Oxime’s Umpolung Properties. Org Lett 2022; 24:8954-8958. [DOI: 10.1021/acs.orglett.2c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kosaku Tanaka
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
6
|
Shetgaonkar SE, Raju A, China H, Takenaga N, Dohi T, Singh FV. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents. Front Chem 2022; 10:909250. [PMID: 35844643 PMCID: PMC9283985 DOI: 10.3389/fchem.2022.909250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Transition metal-catalyzed direct oxidative coupling reactions via C–H bond activation have emerged as a straightforward strategy for the construction of complex molecules in organic synthesis. The direct transformation of C–H bonds into carbon–carbon and carbon–heteroatom bonds renders the requirement of prefunctionalization of starting materials and, therefore, represents a more efficient alternative to the traditional cross-coupling reactions. The key to the unprecedented progress made in this area has been the identification of an appropriate oxidant that facilitates oxidation and provides heteroatom ligands at the metal center. In this context, hypervalent iodine compounds have evolved as mainstream reagents particularly because of their excellent oxidizing nature, high electrophilicity, and versatile reactivity. They are environmentally benign reagents, stable, non-toxic, and relatively cheaper than inorganic oxidants. For many years, palladium catalysis has dominated these oxidative coupling reactions, but eventually, other transition metal catalysts such as gold, copper, platinum, iron, etc. were found to be promising alternate catalysts for facilitating such reactions. This review article critically summarizes the recent developments in non-palladium-catalyzed oxidative coupling reactions mediated by hypervalent iodine (III) reagents with significant emphasis on understanding the mechanistic aspects in detail.
Collapse
Affiliation(s)
| | - Aleena Raju
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
| | - Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| |
Collapse
|
7
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
8
|
Peng H, Liu Q, Sun Y, Luo B, Yu T, Huang P, Zhu D, Wen S. Tandem cyclization/arylation of diaryliodoniums via in situ constructed benzoxazole as a directing group for atom-economical transformation. Org Chem Front 2022. [DOI: 10.1039/d1qo01463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear diaryliodoniums often undergo only single arylation and leave equivalent aryl iodide as waste.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Qian Liu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Tianyian Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Daqian Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| |
Collapse
|
9
|
Csenki JT, Mészáros Á, Gonda Z, Novák Z. Stereoselective Direct N-Trifluoropropenylation of Heterocycles with a Hypervalent Iodonium Reagent. Chemistry 2021; 27:15638-15643. [PMID: 34549840 PMCID: PMC9293340 DOI: 10.1002/chem.202102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The availability and synthesis of fluorinated enamine derivatives such as N-(3,3,3-trifluoropropenyl)heterocycles are challenging, especially through direct functionalization of the heterocyclic scaffold. Herein, a stereoselective N-trifluoropropenylation method based on the use of a bench-stable trifluoropropenyl iodonium salt is described. This reagent enables the straightforward trifluoropropenylation of various N-heterocycles under mild reaction conditions, providing trifluoromethyl enamine type moieties with high stereoselectivity and efficiency.
Collapse
Affiliation(s)
- János T Csenki
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Ádám Mészáros
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Zsombor Gonda
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| |
Collapse
|