1
|
Bairwa M, Verma RK, Bharadwaj KC. Domino Sequence of Ketimization and Electrophilic Amination for an Inverse Aza Intramolecular Morita-Baylis-Hillman Adduct. J Org Chem 2024; 89:14811-14817. [PMID: 39361826 DOI: 10.1021/acs.joc.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Morita-Baylis-Hillman (MBH) reaction, typically catalyzed by a Lewis base, is a popular and useful method for C-C bond formation. Unfortunately, it is limited by a slow reaction rate and has sensitivity toward steric and electronic parameters. Despite tremendous efforts, the versatility of the reaction keeps the quest open for new mechanistic and catalytic pathways. Here, we have reported a Bro̷nsted acid-catalyzed, electrophilic amination (Umpolung of imine) as a method for an inverse Aza Intramolecular MBH adduct in the form of 2-acylindole. Umpolung of imine with nitrogen acting as an electrophilic center has been achieved. Interestingly, the reaction was also shown to occur under catalyst-free conditions also. The expected products of ketimine formation, 6π electrocyclization, or quinoline formation were least/not observed. A large number of examples have demonstrated the reaction strength. β-aryl-substituted acrylate and acrylamide (cinnamates and cinnamides), which are extremely sluggish in conventional MBH chemistry, are the highlights of the developed methodology. The annulated product exhibited keto-enol tautomerism, which was proven by 1H NMR integrals. As an application, another tandem reaction in the form of Michael addition on a highly complex amine was carried out to provide spiro-annulated indole.
Collapse
Affiliation(s)
- Mansingh Bairwa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh Kumar Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
2
|
Fang L, Yu J, Yu Z, Tong F, Zhang C, Hu D, Zhang JQ, Ren H. Photoinduced Metal- and Photosensitizer-Free Decarbonylative C-H Alkylation of Cyclic Sulfamidate Imines. J Org Chem 2023. [PMID: 38058173 DOI: 10.1021/acs.joc.3c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photoinduced decarbonylative C-C bond formation with readily accessible aldehydes as alkyl sources is described. This protocol provides a sustainable alternative for the effective construction of diverse valuable 4-alkylated sulfonyl ketimines under metal- and photosensitizer-free conditions. Significantly, in this reaction, air serves as the green oxidant, and cyclic sulfamidate imines play a dual role of substrate and photocatalyst, thus affording a concise reaction system for C-H alkylation of cyclic sulfamidate imines.
Collapse
Affiliation(s)
- Ling Fang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiawen Yu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Zhiyun Yu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Feifei Tong
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chun Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
3
|
Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1,2-diketones: a sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl)sufamidates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Shukla P, Asati A, Patel D, Singh M, Rai VK, Rai A. Novel Synergistic Catalysis by Ethylcarbodiimide Hydrochloride Salt and CuI Towards Morita‐Baylis‐Hillman Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Prashant Shukla
- School of Physical Sciences Jawaharlal Nehru University New Delhi 110 067 India
| | - Ambika Asati
- Department of Chemistry Guru Ghasidas Vishwavidyalaya (Central University) Bilaspur 495 009, C.G. India
| | - Devkumari Patel
- Department of Chemistry Guru Ghasidas Vishwavidyalaya (Central University) Bilaspur 495 009, C.G. India
| | - Manorama Singh
- Department of Chemistry Guru Ghasidas Vishwavidyalaya (Central University) Bilaspur 495 009, C.G. India
| | - Vijai K. Rai
- Department of Chemistry University of Lucknow Lucknow 226 007, U. P. India
| | - Ankita Rai
- School of Physical Sciences Jawaharlal Nehru University New Delhi 110 067 India
| |
Collapse
|
5
|
An Improved Protocol for the Morita‐Baylis‐Hillman Reaction Allows Unprecedented Broad Synthetic Scope. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Goud SB, Guin S, Prakash M, Samanta S. Cu(OAc) 2/DABCO-mediated domino reaction of vinyl malononitriles with cyclic sulfamidate imines: access to 6-hydroxyaryl-2-aminonicotinonitriles. Org Biomol Chem 2022; 20:352-357. [PMID: 34931209 DOI: 10.1039/d1ob02095a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel Cu(II)-salt/DABCO-mediated one-pot access to a myriad of highly substituted biologically relevant 2-aminonicotinonitriles possessing a resourceful phenolic moiety with satisfactory yields is reported. This method involves cyclic sulfamidate imines as 1C1N sources and different kinds of acyclic/cyclic vinyl malononitriles as 4C sources for pyridine synthesis via a vinylogous Mannich-cycloaromatization sequence process, creating two new C-N bonds under mild conditions. Importantly, this de novo strategy is applicable to gram-scale syntheses, underlining the method's practicability and allowing for a wide range of substrates with excellent functional group tolerance.
Collapse
Affiliation(s)
- S Banuprakash Goud
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| | - Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| | - Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| |
Collapse
|
7
|
Miletto I, Ivaldi C, Gianotti E, Paul G, Travagin F, Giovenzana GB, Fraccarollo A, Marchi D, Marchese L, Cossi M. Predicting the Conformation of Organic Catalysts Grafted on Silica Surfaces with Different Numbers of Tethering Chains: The Silicopodality Concept. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21199-21210. [PMID: 34621460 PMCID: PMC8489525 DOI: 10.1021/acs.jpcc.1c06150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Hybrid catalysts are attracting much attention, since they combine the versatility and efficiency of homogeneous organic catalysis with the robustness and thermal stability of solid materials, for example, mesoporous silica; in addition, they can be used in cascade reactions, for exploring both organic and inorganic catalysis at the same time. Despite the importance of the organic/inorganic interface in these materials, the effect of the grafting architecture on the final conformation of the organic layer (and hence its reactivity) is still largely unexplored. Here, we investigate a series of organosiloxanes comprising a pyridine ring (the catalyst model) and different numbers of alkylsiloxane chains used to anchor it to the MCM-41 surface. The hybrid interfaces are characterized with X-ray powder diffraction, thermogravimetric analyses, Fourier-transform infrared spectroscopy, nuclear magnetic resonance techniques and are modeled theoretically through molecular dynamics (MD) simulations, to determine the relationship between the number of chains and the average position of the pyridine group; MD simulations also provide some insights about temperature and solvent effects.
Collapse
Affiliation(s)
- Ivana Miletto
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Chiara Ivaldi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Enrica Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale, L.go Donegani 2, I-28100 Novara, Italy
| | - Giovanni Battista Giovenzana
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale, L.go Donegani 2, I-28100 Novara, Italy
- CAGE Chemicals srl, Via Bovio 6, I-28100 Novara, Italy
| | - Alberto Fraccarollo
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Davide Marchi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| |
Collapse
|