1
|
Sheikhaleslami S, Sperry J. Mechanochemical Radical Transformations in Organic Synthesis. Chemistry 2025; 31:e202403833. [PMID: 39434622 DOI: 10.1002/chem.202403833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Organic synthesis has historically relied on solution-phase, polar transformations to forge new bonds. However, this paradigm is evolving, propelled by the rapid evolution of radical chemistry. Additionally, organic synthesis is witnessing a simultaneous resurgence in mechanochemistry, the formation of new bonds in the solid-state, further contributing to this shift in the status quo. The aforementioned advances in radical chemistry have predominantly occurred in the solution phase, while the majority of mechanochemical synthesis advances feature polar transformations. Herein, we discuss a rapidly advancing area of organic synthesis: mechanochemical radical reactions. Solid-state radical reactions offer improved green chemistry metrics, better reaction outcomes, and access to intermediates and products that are difficult or impossible to reach in solution. This review explores these reactions in the context of small molecule synthesis, from early findings to the current state-of-the-art, underscoring the pivotal role solid-state radical reactions are likely to play in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Sahra Sheikhaleslami
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| |
Collapse
|
2
|
Tanepau J, Bonnaanaa H, Macé A, Guérin A, Lenormand P, Lamaty F, Pinaud J, Bantreil X. Using Near-Infrared Irradiation for Heating Mechanochemical Reactions in Organic-Dye-Doped Epoxy Milling Jars. Angew Chem Int Ed Engl 2024:e202419354. [PMID: 39533875 DOI: 10.1002/anie.202419354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Albeit mechanochemistry is a novel promising technology that gives access to reactivity under solvent-free conditions, heating such reactions is sometimes compulsory to obtain satisfactory results in terms of conversion, selectivity and/or yield. In this work, we developed a novel approach using a dye that absorbs NIR photons and release the energy as heat. Hence, de novo milling jars in epoxy resin doped with the dye were thus produced to obtain reactors that would produce heat upon irradiation at 850 nm. Temperature profiles were recorded, depending on the irradiance, dye charge in the resin, and milling frequency, showing an excellent control of the temperature. The usefulness of the heating jar was then demonstrated in mechanochemical reactions that are known to require heat to yield the desired product, namely Diels-Alder reactions with high activation energies and the newly developed rearrangement of a sydnone into corresponding 1,3,4-oxadiazolin-2-one.
Collapse
Affiliation(s)
- Joao Tanepau
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hafsa Bonnaanaa
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Angèle Macé
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Arthur Guérin
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Xavier Bantreil
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
3
|
Alić J, Schlegel MC, Emmerling F, Stolar T. Meeting the UN Sustainable Development Goals with Mechanochemistry. Angew Chem Int Ed Engl 2024:e202414745. [PMID: 39290159 DOI: 10.1002/anie.202414745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Chemistry traditionally relies on reactions in solution, but this method is increasingly problematic due to the scale of chemical processes and their economic and environmental impact. Handling residual chemical waste, including solvents, incurs significant costs and environmental pressure. Conversely, novel chemical approaches are needed to address pressing societal issues such as climate change, energy scarcity, food insecurity, and waste pollution. Mechanochemistry, a sustainable chemistry discipline that uses mechanical action to induce chemical reactivity without bulk solvents, is a hot topic in academic research on sustainable and green chemistry. Given its fundamentally different working principles from solution chemistry, mechanochemistry offers more efficient chemical processes and the opportunity to design new chemical reactions. Mechanochemistry has a profound impact on many urgent issues facing our society and it is now necessary to use mechanochemistry to address them. This Minireview aims to provide a guide for using mechanochemistry to meet the United Nations (UN) Sustainable Development Goals (SDGs), thereby contributing to a prosperous society. Detailed analysis shows that mechanochemistry connects with most UN SDGs and offers more cost-efficiency than other approaches together with a superior environmental performance.
Collapse
Affiliation(s)
- Jasna Alić
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| | - Moritz-Caspar Schlegel
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| | - Tomislav Stolar
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| |
Collapse
|
4
|
Liu R, He X, Liu T, Wang X, Wang Q, Chen X, Lian Z. Organic Reactions Enabled by Mechanical Force-Induced Single Electron Transfer. Chemistry 2024; 30:e202401376. [PMID: 38887819 DOI: 10.1002/chem.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Mechanochemical reactions, achieved through milling, grinding, or other mechanical actions, have emerged as a solvent-free alternative to traditional solution-based chemistry. Mechanochemistry not only provides the opportunity to eliminate bulk solvent use, reducing waste generation, but also unveils a new reaction strategy which enables the realization of reactions previously inaccessible in solution. While the majority of organic reactions facilitated by mechanical force traditionally follow two-electron transfer pathways similar to their solution-based counterparts, the field of mechanochemically induced single-electron transfer (SET) reactions has witnessed rapid development. This review outlines examples of mechanochemical reactions facilitated by the SET process, focusing on the reagents that initiate SET, thereby positioning mechanochemistry as a burgeoning field within the realm of single-electron chemistry.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Tianfen Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xinzhou Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| |
Collapse
|
5
|
Amer MM, Backer L, Buschmann H, Handler N, Scherf-Clavel O, Holzgrabe U, Bolm C. Prediction of Degradation Profiles for Various Sartans under Solvent-Free Mechanochemical Conditions. Anal Chem 2024. [PMID: 39092810 DOI: 10.1021/acs.analchem.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
For the approval of a drug, the stability data must be submitted to regulatory authorities. Such analyses are often time-consuming and cost-intensive. Forced degradation studies are mainly carried out under harsh conditions in the dissolved state, often leading to extraneous degradation profiles for a solid drug. Oxidative mechanochemical degradation offers the possibility of generating realistic degradation profiles. In this study, a sustainable mechanochemical procedure is presented for the degradation of five active pharmaceutical ingredients (APIs) from the sartan family: losartan potassium, irbesartan, valsartan, olmesartan medoxomil, and telmisartan. High-resolution mass spectrometry enabled the detection of impurities already present in untreated APIs and allowed the elucidation of degradation products. Significant degradation profiles could already be obtained after 15-60 min of ball milling time. Many of the identified degradation products are described in the literature and pharmacopoeias, emphasizing the significance of our results and the applicability of this approach to predict degradation profiles for drugs in the solid state.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Laura Backer
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Helmut Buschmann
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | - Norbert Handler
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | | | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Čarný T, Kisszékelyi P, Markovič M, Gracza T, Koóš P, Šebesta R. Mechanochemical Pd-Catalyzed Amino- and Oxycarbonylations using FeBr 2(CO) 4 as a CO Source. Org Lett 2023. [PMID: 38018997 DOI: 10.1021/acs.orglett.3c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, we describe the development of mechanochemical amino- and oxycarbonylation employing FeBr2(CO)4 as a solid CO source. This Pd/XantPhos-catalyzed reaction affords a range of carboxamides and esters from aryl iodides and various amines or phenols. Both primary and secondary amines, including amino acids, can be employed as N-nucleophiles.
Collapse
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Péter Kisszékelyi
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Tibor Gracza
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
8
|
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Platonov VA, Kopchuk DS, Santra S, Zyryanov GV, Ranu BC. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers (Basel) 2023; 15:1853. [PMID: 37112002 PMCID: PMC10142995 DOI: 10.3390/polym15081853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.
Collapse
Affiliation(s)
- Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Vadim A. Platonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Wróblewska A, Bugaj K, Łagiewka J, Girek T, Rabai J, Drabowicz J. Attempts to oxidize sulfides under mechanochemical conditions: synthetic and stereochemical aspects. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2193405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Aneta Wróblewska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | - Kamil Bugaj
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | - Jakub Łagiewka
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | - Tomasz Girek
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | | | - Józef Drabowicz
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| |
Collapse
|
10
|
Meena N, Bhawani, Sonam, Rangan K, Kumar A. Ball-Milling-Enabled Zn(OTf) 2-Catalyzed Friedel-Crafts Hydroxyalkylation of Imidazo[1,2- a]pyridines and Indoles. J Org Chem 2023. [PMID: 36787621 DOI: 10.1021/acs.joc.2c02719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A facile and efficient synthetic method for the construction of C3-hydroxyalkylated imidazo[1,2-a]pyridines and indoles by a Zn(OTf)2-catalyzed Friedel-Crafts hydroxyalkylation of imidazo[1,2-a]pyridines and indoles with carbonyl compounds under mechanochemical conditions is reported. Good product selectivity, shorter reaction time, ambient reaction temperature, tolerance of a wide range of functional groups, broad substrate scope, moderate to good yield of products, and scalability are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bhawani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
11
|
Canale V, Trybała W, Chaumont-Dubel S, Koczurkiewicz-Adamczyk P, Satała G, Bento O, Blicharz-Futera K, Bantreil X, Pękala E, Bojarski AJ, Lamaty F, Marin P, Zajdel P. 1-(Arylsulfonyl-isoindol-2-yl)piperazines as 5-HT 6R Antagonists: Mechanochemical Synthesis, In Vitro Pharmacological Properties and Glioprotective Activity. Biomolecules 2022; 13:biom13010012. [PMID: 36671397 PMCID: PMC9855333 DOI: 10.3390/biom13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active states are involved in various pathological mechanisms, the development of biased ligands with different functional profiles at specific 5-HT6R-elicited signaling pathways may provide a novel therapeutic perspective in the field of neurodegenerative and psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives and synthesized them using a sustainable mechanochemical method. We identified the safe and metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide bond combined with its incorporation into the isoindoline scaffold switched the functional profile of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxicity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
- Correspondence:
| | - Wojciech Trybała
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Ophélie Bento
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
12
|
Zuo S, Zheng S, Liu J, Zuo A. Mechanochemical synthesis of unsymmetrical salens for the preparation of Co-salen complexes and their evaluation as catalysts for the synthesis of α-aryloxy alcohols via asymmetric phenolic kinetic resolution of terminal epoxides. Beilstein J Org Chem 2022; 18:1416-1423. [PMID: 36300012 PMCID: PMC9577384 DOI: 10.3762/bjoc.18.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we report the mechanochemical synthesis of unsymmetrical salens using grinding and ball milling technologies, respectively, both of which were afforded in good yield. The chelating effect of the unsymmetrical salens with zinc, copper, and cobalt was studied and the chiral Co-salen complex 2f was obtained in 98% yield. Hydrolytic kinetic resolution (HKR) of epichlorohydrin with water catalyzed by complex 2f (0.5 mol %) was explored and resulted in 98% ee, suggesting complex 2f could serve as an enantioselective catalyst for the asymmetric ring opening of terminal epoxides by phenols. A library of α-aryloxy alcohols 3 was thereafter synthesized in good yield and high ee using 2f via the phenolic KR of epichlorohydrin.
Collapse
Affiliation(s)
- Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuxiang Zheng
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ang Zuo
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
13
|
Gamboa-Velázquez G, Juaristi E. Mechanoenzymology in the Kinetic Resolution of β-Blockers: Propranolol as a Case Study. ACS ORGANIC & INORGANIC AU 2022; 2:343-350. [PMID: 36855594 PMCID: PMC9955203 DOI: 10.1021/acsorginorgau.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in biotechnology, protein engineering, and enzymatic immobilization have made it possible to carry out biocatalytic transformations through alternative non-conventional activation strategies. In particular, mechanoenzymology (i.e., the use of the mechanical force produced by milling or grinding to activate a biotransformation) has become a new area in so-called "green chemistry", reshaping key fundaments of biocatalysis and leading to the exploration of enzymatic transformations under more sustainable conditions. Significantly, numerous chiral active pharmaceutical ingredients have been synthesized via mechanoenzymatic methods, boosting the use of biocatalysis in the synthesis of chiral drugs. In this regard and aiming to widen the scope of the young field of mechanoenzymology, a dual kinetic resolution of propranolol precursors was explored. The biocatalytic methodology mediated by Candida antarctica Lipase B (CALB) and activated by mechanical force allowed the isolation of both enantiomeric precursors of propranolol with high enantiomeric excess (up to 99% ee), complete conversion (c = 50%), and excellent enantiodifferentiation (E > 300). Moreover, the enantiomerically pure products were used to synthesize both enantiomers of the β-blocker propranolol with high enantiopurity.
Collapse
Affiliation(s)
- Gonzalo Gamboa-Velázquez
- Departamento
de Química, Centro de Investigación
y de Estudios Avanzados, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento
de Química, Centro de Investigación
y de Estudios Avanzados, 07360 Ciudad de México, Mexico,El
Colegio Nacional, Luis
González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico,
| |
Collapse
|