1
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
2
|
Liang Y, Liu C, Li Y, Ouyang L. TsOH-catalyzed dehydroxylative cross-coupling of alcohols with phenols: rapid access to propofol derivatives. RSC Adv 2024; 14:26857-26862. [PMID: 39184007 PMCID: PMC11343040 DOI: 10.1039/d4ra04674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024] Open
Abstract
Modification of the parent structure of molecules often alters their physicochemical properties and biological activities. Herein, a practical, efficient, and highly regioselective C-H alkylation of phenols with alcohols via dehydroxylative cross-coupling was developed to produce para-alkylated phenols with excellent regioselectivities and yields, using which propofol derivatives were rapidly synthesized. This process is performed under mild and simple conditions and is well-compatible with a variety of alcohols (secondary and tertiary benzylic alcohols as well as allyl alcohols) as alkylated agents. In addition, high aryl ether derivatives were also obtained using this catalytic system.
Collapse
Affiliation(s)
- Yuqiu Liang
- School of Pharmacy, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Chengxiu Liu
- School of Pharmacy, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Youchun Li
- The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University Ganzhou 341000 Jiangxi Province P. R. China
| | - Lu Ouyang
- School of Pharmacy, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| |
Collapse
|
3
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
4
|
Mao Y, Fan P, Wang C. Photocatalyzed Formal All-Carbon [3+2] Cycloaddition of Aromatic Aldehydes with Arylethynyl Silanes. Org Lett 2022; 24:9413-9418. [PMID: 36534612 DOI: 10.1021/acs.orglett.2c03807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we report a photoinduced TBADT-catalyzed formal all-carbon [3+2] cycloaddition of aromatic aldehydes and arylethynyl silanes, which combines acyl C-H and ortho C-H activation of aromatic aldehydes, offering a new method for constructing the indanone scaffold under mild conditions. By choosing an appropriate silane as the precursor, one can selectively retain or remove the α-silyl group of the indanone products during the reaction. Preliminary mechanistic studies point to a reaction mechanism involving a 1,5-H shift as a key step.
Collapse
Affiliation(s)
- Yujia Mao
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Wang R, Fan P, Wang C. Nickel/Photo-Cocatalyzed Asymmetric Acyl C–H Allylation of Aldehydes and Formamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, People’s Republic of China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
6
|
Murugesan V, Muralidharan A, Anantharaj GV, Chinnusamy T, Rasappan R. Photoredox–Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes. Org Lett 2022; 24:8435-8440. [DOI: 10.1021/acs.orglett.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anjana Muralidharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|