1
|
van der Miesen MM, Joosten EA, Kaas AL, Linden DE, Peters JC, Vossen CJ. Habituation to pain: self-report, electroencephalography, and functional magnetic resonance imaging in healthy individuals. A scoping review and future recommendations. Pain 2024; 165:500-522. [PMID: 37851343 PMCID: PMC10859850 DOI: 10.1097/j.pain.0000000000003052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Habituation to pain is a fundamental learning process and important adaption. Yet, a comprehensive review of the current state of the field is lacking. Through a systematic search, 63 studies were included. Results address habituation to pain in healthy individuals based on self-report, electroencephalography, or functional magnetic resonance imaging. Our findings indicate a large variety in methods, experimental settings, and contexts, making habituation a ubiquitous phenomenon. Habituation to pain based on self-report studies shows a large influence of expectations, as well as the presence of individual differences. Furthermore, widespread neural effects, with sometimes opposing effects in self-report measures, are noted. Electroencephalography studies showed habituation of the N2-P2 amplitude, whereas functional magnetic resonance imaging studies showed decreasing activity during painful repeated stimulation in several identified brain areas (cingulate cortex and somatosensory cortices). Important considerations for the use of terminology, methodology, statistics, and individual differences are discussed. This review will aid our understanding of habituation to pain in healthy individuals and may lead the way to improving methods and designs for personalized treatment approaches in chronic pain patients.
Collapse
Affiliation(s)
- Maite M. van der Miesen
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Amanda L. Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - David E.J. Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Judith C. Peters
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Catherine J. Vossen
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
2
|
Granot M, Srulovici E, Granovsky Y, Yarnitsky D, Kuperman P. Dispositional and situational personal features and acute post-collision head and neck pain: Double mediation of pain catastrophizing and pain sensitivity. PLoS One 2022; 17:e0262076. [PMID: 35007302 PMCID: PMC8746745 DOI: 10.1371/journal.pone.0262076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Pain variability can be partially attributed to psycho-cognitive features involved in its processing. However, accumulating research suggests that simple linear correlation between situational and dispositional factors may not be sufficiently explanatory, with some positing a role for mediating influences. In addition, acute pain processing studies generally focus on a post-operative model with less attention provided to post-traumatic injury. As such, this study aimed to investigate a more comprehensive pain processing model that included direct and indirect associations between acute pain intensity in the head and neck, pain catastrophizing (using pain catastrophizing scale (PCS)), and pain sensitivity (using the pain sensitivity questionnaire (PSQ)), among 239 patients with post-motor vehicle collision pain. The effect of personality traits (using Ten Items Personality Inventory (TIPI)) and emotional status (using Hospital Anxiety and Depression Scale (HADS) and Perceived Stress Scale (PSS)) on that model was examined as well. To this end, three Structural Equation Modeling (SEM) analyses were conducted. Overall, the data had good fit to all the models, with only PSQ found to have a direct correlation with acute pain intensity. The SEM analyses conversely revealed several mediations. Specifically, that: first, PSQ fully mediated the relationship between PCS and pain intensity; second, PCS and PSQ together fully mediated the relationship between conscientiousness (personality trait) and pain intensity; and finally, emotional status had direct and indirect links with PSQ and pain intensity. In conclusion, these models suggest that during the acute post-collision phase, pain sensitivity intermediates between emotional states and personality traits, partially via elevated pain catastrophizing thoughts.
Collapse
Affiliation(s)
- Michal Granot
- Department of Nursing, University of Haifa, Haifa, Israel
| | | | - Yelena Granovsky
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - David Yarnitsky
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Pora Kuperman
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
3
|
Paul K, Tik M, Hahn A, Sladky R, Geissberger N, Wirth EM, Kranz GS, Pfabigan DM, Kraus C, Lanzenberger R, Lamm C, Windischberger C. Give me a pain that I am used to: distinct habituation patterns to painful and non-painful stimulation. Sci Rep 2021; 11:22929. [PMID: 34824311 PMCID: PMC8617189 DOI: 10.1038/s41598-021-01881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Pain habituation is associated with a decrease of activation in brain areas related to pain perception. However, little is known about the specificity of these decreases to pain, as habituation has also been described for other responses like spinal reflexes and other sensory responses. Thus, it might be hypothesized that previously reported reductions in activation are not specifically related to pain habituation. For this reason, we performed a 3 T fMRI study using either painful or non-painful electrical stimulation via an electrode attached to the back of the left hand. Contrasting painful vs. non-painful stimulation revealed significant activation clusters in regions well-known to be related to pain processing, such as bilateral anterior and posterior insula, primary/secondary sensory cortices (S1/S2) and anterior midcingulate cortex (aMCC). Importantly, our results show distinct habituation patterns for painful (in aMCC) and non-painful (contralateral claustrum) stimulation, while similar habituation for both types of stimulation was identified in bilateral inferior frontal gyrus (IFG) and contralateral S2. Our findings thus distinguish a general habituation in somatosensory processing (S2) and reduced attention (IFG) from specific pain and non-pain related habituation effects where pain-specific habituation effects within the aMCC highlight a change in affective pain perception.
Collapse
Affiliation(s)
- Katharina Paul
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Nicole Geissberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Eva-Maria Wirth
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniela M Pfabigan
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Behavioural Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|