1
|
França PRDC, Paiva JPBD, Carvalho RRD, Figueiredo CP, Sirois P, Fernandes PD. R-954, a bradykinin B1 receptor antagonist, as a potential therapy in a preclinical endometriosis model. Peptides 2024; 181:171294. [PMID: 39265809 DOI: 10.1016/j.peptides.2024.171294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Endometriosis is a gynecological condition characterized by the growth of endometrium-like tissues outside of the uterine cavity. Currently available drugs are efficacious in treating endometriosis-related pain, however it's not a targeted treatment. The aim of this work is to evaluate the effects of R-954, a bradykinin B1 receptor antagonist, in a murine model of endometriosis. The model was induced in animals through autologous transplantation of part of the uterine horn. After 51 days, it was observed that implants developed into endometriotic lesions. The administration of R-954 or progesterone, for 15 consecutive days, prevented the progression of cyst development, reduced the size and weight of the cysts. Both treatments also reduced cellular infiltrate and production of inflammatory mediators (interleukin-1β, interleukin-6, tumor necrosis factor). However, only R-954 decreased angiogenic factors (VEGF and VEGF receptor). In addition, treatment with the antagonist did not interfere in the females' estrous cycle, as well as prevented gestational losses (reduction in the number of intermediate resorptions in pregnant females with endometriosis). Data suggested that R-954 has anti-inflammatory and anti-angiogenic effects; does not influence the estrous cycle; and prevents the number of gestational losses suggesting it as a good candidate for endometriosis treatment.
Collapse
Affiliation(s)
- Patricia Ribeiro de Carvalho França
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil
| | - João Pedro Barros de Paiva
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil
| | | | | | - Pierre Sirois
- Laval University, CHUL Research Center, Quebec, Canada
| | - Patricia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil.
| |
Collapse
|
2
|
Slayden O, Luo F, Park Y, Moses AS, Demessie AA, Singh P, Korzun T, Taratula O, Taratula O. Targeted nanoparticles for imaging and therapy of endometriosis†. Biol Reprod 2024; 110:1191-1200. [PMID: 38738758 PMCID: PMC11180615 DOI: 10.1093/biolre/ioae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.
Collapse
Affiliation(s)
- Ov Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| |
Collapse
|
3
|
Status and related factors of postoperative recurrence of ovarian endometriosis: a cross-sectional study of 874 cases. Arch Gynecol Obstet 2023; 307:1495-1501. [PMID: 36708425 PMCID: PMC10110635 DOI: 10.1007/s00404-023-06932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
PURPOSE Exploring the status and related factors of postoperative recurrence of ovarian endometriosis. METHODS This study analyzed the results of questionnaires conducted in 27 hospitals across the country from January 2019 to November 2021. All women were divided into recurrence group and non-recurrence group to analyze the recurrence rate and related factors after ovarian endometriosis surgery. RESULTS The recurrence rates of ovarian endometriosis within 1 year, 1-2 years, 2-3 years, 3-4 years, 4-5 years and more than 5 years were 6.27%, 35.85%, 55.38%, 65.00% and 56.82%, respectively. Significant differences were found between two groups in terms of age at surgery (OR: 0.342, 95%CI: 0.244-0.481, P < 0.001), presence of dysmenorrhea (OR: 1.758, 95%CI: 1.337-2.312, P < 0.001), presence of adenomyosis (OR: 1.948, 95%CI: 1.417-2.678, P < 0.001) and family history of endometriosis or adenomyosis (OR: 1.678, 95%CI: 1.035-2.721, P = 0.021). The age at surgery (OR: 0.358, 95%CI: 0.253-0.506, P < 0.001), presence of dysmenorrhea (OR: 1.379, 95%CI: 1.026-1.853, P = 0.033) and presence of adenomyosis (OR: 1.799, 95%CI: 1.275-2.537, P = 0.001) were significantly associated with endometrioma recurrence in multivariate analysis. No significant associations were found between the recurrence rate and body mass index (BMI), educational background, age of menarche, gravida, parity, uterine leiomyoma, endometrial polyps or postoperative use of gonadotropin-releasing hormone agonist (GnRH-a). CONCLUSIONS Dysmenorrhea and presence of adenomyosis are independent risk factors for postoperative recurrence of ovarian endometriosis, and older age is an independent protective factor for postoperative recurrence.
Collapse
|
4
|
Hu S, Guo W, Shen Y. Potential link between the nerve injury-induced protein (Ninjurin) and the pathogenesis of endometriosis. Int Immunopharmacol 2023; 114:109452. [PMID: 36446236 DOI: 10.1016/j.intimp.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis remains a widespread but severe gynecological disease in women of reproductive age, with an unknown etiology and few treatment choices. The menstrual reflux theory is largely accepted as the underlying etiology but does not explain the morbidity or unpleasant pain sensations of endometriosis. The neurological and immune systems are both involved in pain mechanisms of endometriosis, and interlinked through a complex combination of cytokines and neurotransmitters. Numerous pieces of evidence suggest that the nerve injury-inducible protein, Ninjurin, is actively expressed in endometriosis lesions, which contributes to the etiology and development of endometriosis. It may be explored in the future as a novel therapeutic target. The aim of the present review was to elucidate the multifaceted role of Ninjurin. Furthermore, we summarize the association of Ninjurin with the pain mechanism of endometriosis and outline the future research directions. A novel therapeutic pathway can be discovered based on the potential pathogenic variables.
Collapse
Affiliation(s)
- Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Martins AF, Neto AC, Rodrigues AR, Oliveira SM, Sousa-Mendes C, Leite-Moreira A, Gouveia AM, Almeida H, Neves D. Metformin Prevents Endothelial Dysfunction in Endometriosis through Downregulation of ET-1 and Upregulation of eNOS. Biomedicines 2022; 10:2782. [PMID: 36359302 PMCID: PMC9687337 DOI: 10.3390/biomedicines10112782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
This study aimed to evaluate if the treatment with metformin affects the morphologic structure, endothelial function, angiogenesis, inflammation and oxidation-responsive pathways in the heart of mice with surgically induced endometriosis. B6CBA/F1 mice (n = 37) were divided into four groups; Sham (S), Metformin (M), Endometriosis (E) and Metformin/Endometriosis (ME). The cross-sectional area of cardiomyocytes was assessed after Hematoxylin-Eosin staining and fibrosis after Picrosirius-Red staining. ET-1, nitric oxide synthases-iNOS and eNOS, and VEGF and VEGFR-2 were detected by immunofluorescence. Semi-quantification of ET-1, eNOS, VEGF, NF-kB, Ikβα and KEAP-1 was performed by Western blotting. MIR199a, MIR16-1, MIR18a, MIR20a, MIR155, MIR200a, MIR342, MIR24-1 and MIR320a were quantified by Real-Time qPCR. The interaction of endometriosis and metformin effects was assessed by a two-way ANOVA test. Compared with the other groups, M-treated mice presented a higher cross-sectional area of cardiomyocytes. Heart fibrosis increased with endometriosis. Treatment of endometriosis with metformin in the ME group downregulates ET-1 and upregulates eNOS expression comparatively with the E group. However, metformin failed to mitigate NF-kB expression significantly incremented by endometriosis. The expression of MIR199a, MIR16-1 and MIR18a decreased with endometriosis, whereas MIR20a showed an equivalent trend, altogether reducing cardioprotection. In summary, metformin diminished endometriosis-associated endothelial dysfunction but did not mitigate the increase in NF-kB expression and cardiac fibrosis in mice with endometriosis.
Collapse
Affiliation(s)
- Ana Filipa Martins
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Sandra Marisa Oliveira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Xie C, Yin Z, Liu Y. Analysis of characteristic genes and ceRNA regulation mechanism of endometriosis based on full transcriptional sequencing. Front Genet 2022; 13:902329. [PMID: 35938015 PMCID: PMC9353714 DOI: 10.3389/fgene.2022.902329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Endometriosis is a common gynecological disorder that usually causes infertility, pelvic pain, and ovarian masses. This study aimed to mine the characteristic genes of endometriosis, and explore the regulatory mechanism and potential therapeutic drugs based on whole transcriptome sequencing data and resources from public databases, providing a theoretical basis for the diagnosis and treatment of endometriosis. Methods: The transcriptome data of the five eutopic (EU) and ectopic (EC) endometrium samples were obtained from Beijing Obstetrics and Gynecology Hospital, Beijing, China, and dinified as the own data set. The expression and clinical data of EC and EU samples in GSE25628 and GSE7305 datasets were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds). Differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify the endometriosis-related differentially expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted by the “clusterProfiler” R package. Then, characteristic genes for endometriosis were identified by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithm. The expression of characteristic genes was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western-blot. The receiver operating characteristic (ROC) curve was used to evaluate the discriminatory ability of characteristic genes. We assessed the abundance of infiltrating immune cells in each sample using MCP-counter and ImmuCellAI algorithms. The competitive endogenous RNA (ceRNA) regulatory network of characteristic genes was created by Cytoscape and potential targeting drugs were obtained in the CTD database. Results: 44 endometriosis-related differentially expressed genes were obtained from GSE25628 and the own dataset. Subsequently, LASSO and SVM-RFE algorithms identified four characteristic genes, namely ACLY, PTGFR, ADH1B, and MYOM1. The results of RT-PCR and western-blot were consistent with those of sequencing. The result of ROC curves indicated that the characteristic genes had powerful abilities in distinguishing EC samples from EU samples. Infiltrating immune cells analysis suggested that there was a certain difference in immune microenvironment between EC and EU samples. The characteristic genes were significantly correlated with specific differential immune cells between EC and EU samples. Then, a ceRNA regulatory network of characteristic genes was constructed and showed a total of 7, 11, 11, and 1 miRNA associated with ACLY, ADH1B, PTGFR, and MYOM1, respectively. Finally, we constructed a gene-compound network and mined 30 drugs targeting ACLY, 33 drugs targeting ADH1B, 13 drugs targeting MYOM1, and 12 drugs targeting PTGFR. Conclusion: Comprehensive bioinformatic analysis was used to identify characteristic genes, and explore ceRNA regulatory network and potential therapeutic agents for endometriosis. Altogether, these findings provide new insights into the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
| | | | - Yong Liu
- *Correspondence: Chengmao Xie, ; Yong Liu,
| |
Collapse
|
7
|
Simón-Gracia L, Kiisholts K, Petrikaitė V, Tobi A, Saare M, Lingasamy P, Peters M, Salumets A, Teesalu T. Homing Peptide-Based Targeting of Tenascin-C and Fibronectin in Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3257. [PMID: 34947606 PMCID: PMC8708492 DOI: 10.3390/nano11123257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for precision delivery of diagnostic and therapeutic compounds to endometriotic lesions. First, we audited a panel of peptide phages for the binding to the cultured immortalized endometriotic epithelial 12Z and eutopic stromal HESC cell lines. The bacteriophages displaying PL1 peptide that engages with angiogenic extracellular matrix overexpressed in solid tumors showed the strongest binding to both cell lines. The receptors of PL1 peptide, tenascin C domain C (TNC-C) and fibronectin Extra Domain-B (Fn-EDB), were expressed in both cells. Silver nanoparticles functionalized with synthetic PL1 peptide showed specific internalization in 12Z and HESC cells. Treatment with PL1-nanoparticles loaded with the potent antimitotic drug monomethyl auristatin E decreased the viability of endometriotic cells in 2D and 3D cultures. Finally, PL1-nanoparticless bound to the cryosections of clinical peritoneal endometriotic lesions in the areas positive for TNC-C and Fn-EDB immunoreactivities and not to sections of normal endometrium. Our findings suggest potential applications for PL1-guided nanoparticles in precision diagnosis and therapy of endometriosis.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Kristina Kiisholts
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
| | - Vilma Petrikaitė
- Laboratory of Drug Target Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania
| | - Allan Tobi
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Merli Saare
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Prakash Lingasamy
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Maire Peters
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
- Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Meng X, Li Y, Li Q, Yang J, An M, Fu X, Zhang S, Chen J. Involvement of bradykinin and bradykinin B1 receptor in patients with endometriosis. Exp Ther Med 2021; 22:1240. [PMID: 34539836 PMCID: PMC8438668 DOI: 10.3892/etm.2021.10675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Endometriosis (EM), a benign aseptic inflammatory disease, is associated with the presence of endometrial foci. Pain, one of its typical symptoms, has been reported as a constant stressor, but the etiology and pathogenesis of EM-associated pain are unclear. In the present study, eutopic and ectopic endometrium samples from women with EM (n=50) and normal endometrium samples from control subjects (n=20) were collected. Serum levels of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α) and bradykinin (BK) were measured using commercial ELISA kits. The expression of the BKB1 receptor (BKB1R) protein was evaluated by immunohistochemical staining and western blot assay. The mRNA expression of BKB1R was measured by reverse transcription-quantitative PCR. The results revealed that there was a substantial increase in the protein and mRNA expression of BKB1R, as well as the release of PGE2, PGF2α and BK in the blood, in the EM group compared with that in the control group. Moreover, PGE2, PGF2α and BK levels were significantly correlated with each other, as well as with the pain intensity of EM. The increased expression levels of BKB1R protein and mRNA were positively correlated with the pain degree of EM. Thus, these data indicated that BK and BKB1R were involved in the pathological onset of EM-associated pain and that they may play an important role in EM-related pain by inducing PGE2 and PGF2α. The data indicate a potential new therapeutic target for EM-related pain.
Collapse
Affiliation(s)
- Xin Meng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Ying Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Qingxue Li
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian Yang
- Department of Rehabilitation, Special Care Hospital of Hebei, Shijiazhuang, Hebei 050051, P.R. China
| | - Mingli An
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Xinping Fu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Shuancheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
9
|
Grammatis AL, Georgiou EX, Becker CM. Pentoxifylline for the treatment of endometriosis-associated pain and infertility. Cochrane Database Syst Rev 2021; 8:CD007677. [PMID: 34431079 PMCID: PMC8407096 DOI: 10.1002/14651858.cd007677.pub4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Endometriosis is a chronic inflammatory condition that occurs during the reproductive years. It is characterised by endometrium-like tissue developing outside the uterine cavity. This endometriotic tissue development is dependent on oestrogen produced primarily by the ovaries and partially by the endometriotic tissue itself, therefore traditional management has focused on ovarian suppression. In this review we considered the role of modulation of the immune system as an alternative approach. This is an update of a Cochrane Review previously published in 2012. OBJECTIVES To determine the effectiveness and safety of pentoxifylline in the management of endometriosis. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility (CGF) Group Trials Register, CENTRAL, MEDLINE, Embase, PsycINFO, and AMED on 16 December 2020, together with reference checking and contact with study authors and experts in the field to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing pentoxifylline with placebo or no treatment, other medical treatment, or surgery in women with endometriosis. The primary outcomes were live birth rate and overall pain (as measured by a visual analogue scale (VAS) of pain, other validated scales, or dichotomous outcomes) per woman randomised. Secondary outcomes included clinical pregnancy rate, miscarriage rate, rate of recurrence, and adverse events resulting from the pentoxifylline intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies against the inclusion criteria, extracted data, and assessed risk of bias, consulting a third review author where required. We contacted study authors as needed. We analysed dichotomous outcomes using Mantel-Haenszel risk ratios (RRs), 95% confidence intervals (CIs), and a fixed-effect model. For small numbers of events, we used a Peto odds ratio (OR) with 95% CI instead. We analysed continuous outcomes using the mean difference (MD) between groups presented with 95% CIs. We used the I2 statistic to evaluate heterogeneity amongst studies. We employed the GRADE approach to assess the quality of the evidence. MAIN RESULTS We included five parallel-design RCTs involving a total of 415 women. We included one additional RCT in this update. Three studies did not specify details relating to allocation concealment, and two studies were not blinded. There were also considerable loss to follow-up, with four studies not conducting intention-to-treat analysis. We judged the quality of the evidence as very low. Pentoxifylline versus placebo No trials reported on our primary outcomes of live birth rate and overall pain. We are uncertain as to whether pentoxifylline treatment affects clinical pregnancy rate when compared to placebo (RR 1.38, 95% CI 0.91 to 2.10; 3 RCTs, n = 285; I2 = 0%; very low-quality evidence). The evidence suggests that if the clinical pregnancy rate with placebo is estimated to be 20%, then the rate with pentoxifylline is estimated as between 18% and 43%. We are also uncertain as to whether pentoxifylline affects the recurrence rate of endometriosis (RR 0.84, 95% CI 0.30 to 2.36; 1 RCT, n = 121; very low-quality evidence) or miscarriage rate (Peto OR 1.99, 95% CI 0.20 to 19.37; 2 RCTs, n = 164; I2 = 0%; very low-quality evidence). No trials reported on the effect of pentoxifylline on improvement of endometriosis-related symptoms other than pain or adverse events. Pentoxifylline versus no treatment No trials reported on live birth rate. We are uncertain as to whether pentoxifylline treatment affects overall pain when compared to no treatment at one month (MD -0.36, 95% CI -2.12 to 1.40; 1 RCT, n = 34; very low-quality evidence), two months (MD -1.25, 95% CI -2.67 to 0.17; 1 RCT, n = 34; very low-quality evidence), or three months (MD -1.60, 95% CI -3.32 to 0.12; 1 RCT, n = 34; very low-quality evidence). No trials reported on adverse events caused by pentoxifylline or any of our other secondary outcomes. Pentoxifylline versus other medical therapies One study (n = 83) compared pentoxifylline to the combined oral contraceptive pill after laparoscopic surgery to treat endometriosis, but could not be included in the meta-analysis as it was unclear if the data were presented as +/- standard deviation and what the duration of treatment was. No trials reported on adverse events caused by pentoxifylline or any of our other secondary outcomes. Pentoxifylline versus conservative surgical treatment No study reported on this comparison. AUTHORS' CONCLUSIONS No studies reported on our primary outcome of live birth rate. Due to the very limited evidence, we are uncertain of the effects of pentoxifylline on clinical pregnancy rate, miscarriage rate, or overall pain. There is currently insufficient evidence to support the use of pentoxifylline in the management of women with endometriosis with respect to subfertility and pain relief outcomes.
Collapse
Affiliation(s)
| | | | - Christian M Becker
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Zhou S, Huang C, Wang W, Liu J. MiR-370-3p inhibits the development of human endometriosis by downregulating EDN1 expression in endometrial stromal cells. Cell Biol Int 2021; 45:1183-1190. [PMID: 33470475 DOI: 10.1002/cbin.11552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
MiR-370-3p has been demonstrated to be downregulated in patients with endometriosis (EM). However, its role and molecular mechanisms in the progression of EM remain unclear. Real-time polymerase chain reaction was used to measure the expression of miR-370-3p and endothelin-1 (EDN1) in patients with or without EM. After miR-370-3p overexpression or knockdown in ectopic endometrial hEM15A cells, the changes in the proliferation, apoptosis, and migration and invasion capacities were detected by using cell counting kit-8, flow cytometry, and transwell methods. The interplay between miR-370-3p and EDN1 was confirmed by a luciferase reporter assay. Patients with EM showed adverse expression of EDN1 and miR-370-3p, especially in eutopic endometrium and ectopic endometrium. MiR-370-3p inhibited the proliferation, metastasis, and invasion capacities of hEM15A cells and promoted apoptosis. Investigation of its molecular mechanism revealed that miR-370-3p targeted EDN1 to influence the biological functions of hEM15A cells. MiR-370-3p represented as a therapeutic target for EM treatment.
Collapse
Affiliation(s)
- Shun Zhou
- Department of Interventional Radiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Chengyi Huang
- Department of Interventional Radiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Juan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Moses AS, Demessie AA, Taratula O, Korzun T, Slayden OD, Taratula O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004975. [PMID: 33491876 PMCID: PMC7928207 DOI: 10.1002/smll.202004975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Indexed: 05/02/2023]
Abstract
Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.
Collapse
Affiliation(s)
- Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Olena Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tetiana Korzun
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| |
Collapse
|
12
|
Nagayasu M, Imanaka S, Kimura M, Maruyama S, Kobayashi H. Nonhormonal Treatment for Endometriosis Focusing on Redox Imbalance. Gynecol Obstet Invest 2021; 86:1-12. [PMID: 33395684 DOI: 10.1159/000512628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The aim of this review is to investigate the oxidant/antioxidant status and its regulatory mechanisms in patients with endometriosis and to summarize the antioxidant therapy as an alternative to hormonal therapy for endometriosis. Each keyword alone or in combination was used to search from PubMed and Embase by applying the filters of the title and the publication years between January 2000 and March 2020. Endometriosis is a chronic inflammatory disease characterized by repeated episodes of hemorrhage. Methemoglobin in repeated hemorrhage produces large amounts of superoxide anion via the autoxidation of hemoglobin. Excessive free-radical production causes redox imbalance, leading to inadequate antioxidant defenses and damage to endometrial cells, but may contribute to endometrial cell growth and survival through activation of various signaling pathways. In addition, to overcome excessive oxidative stress, estradiol participates in the induction of antioxidants such as superoxide dismutase in mitochondria. Several antioxidants that suppress free radicals may be effective in endometriosis-related pain. We searched for 23 compounds and natural substances that could reduce the pain caused by superoxide/reactive oxygen species in basic research and animal models. Next, we built a list of 16 drugs that were suggested to be effective against endometriosis other than hormone therapy in preclinical studies and clinical trials. Of the 23 and 16 drugs, 4 overlapping drugs could be potential candidates for clinically reducing endometriosis-related pain caused by superoxide anion/reactive oxygen species. These drugs include polyphenols (resveratrol and polydatin), dopamine agonists (cabergoline), and statins (simvastatin). However, no randomized controlled trials have evaluated the efficacy of these drugs. In conclusion, this review summarizes the following 2 points: superoxide anion generation by methemoglobin is enhanced in endometriosis, resulting in redox imbalance; and some compounds and natural substances that can suppress free radicals may be effective in endometriosis-related pain. Further randomized clinical trials based on larger series are mandatory to confirm the promising role of antioxidants in the nonhormonal management of endometriosis.
Collapse
Affiliation(s)
- Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sachiyo Maruyama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan, .,Ms.Clinic MayOne, Kashihara, Japan,
| |
Collapse
|
13
|
Maddern J, Grundy L, Castro J, Brierley SM. Pain in Endometriosis. Front Cell Neurosci 2020; 14:590823. [PMID: 33132854 PMCID: PMC7573391 DOI: 10.3389/fncel.2020.590823] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is a chronic and debilitating condition affecting ∼10% of women. Endometriosis is characterized by infertility and chronic pelvic pain, yet treatment options remain limited. In many respects this is related to an underlying lack of knowledge of the etiology and mechanisms contributing to endometriosis-induced pain. Whilst many studies focus on retrograde menstruation, and the formation and development of lesions in the pathogenesis of endometriosis, the mechanisms underlying the associated pain remain poorly described. Here we review the recent clinical and experimental evidence of the mechanisms contributing to chronic pain in endometriosis. This includes the roles of inflammation, neurogenic inflammation, neuroangiogenesis, peripheral sensitization and central sensitization. As endometriosis patients are also known to have co-morbidities such as irritable bowel syndrome and overactive bladder syndrome, we highlight how common nerve pathways innervating the colon, bladder and female reproductive tract can contribute to co-morbidity via cross-organ sensitization.
Collapse
Affiliation(s)
- Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, North Terrace Campus, Adelaide, SA, Australia
| |
Collapse
|
14
|
Gonçalves ECD, Vieira G, Gonçalves TR, Simões RR, Brusco I, Oliveira SM, Calixto JB, Cola M, Santos ARS, Dutra RC. Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model. Cell Mol Neurobiol 2020; 41:63-78. [PMID: 32222846 DOI: 10.1007/s10571-020-00832-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.
Collapse
Affiliation(s)
- Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Tainara R Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Róli R Simões
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Sara M Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B Calixto
- Center of Innovation and Preclinical Research, Florianópolis, SC, 88056-000, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil. .,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Laboratório de Autoimunidade e Imunofarmacologia (LAIF), Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Araranguá. Rodovia Jorge Lacerda, Km 35.4 - Jardim das Avenidas, Araranguá, SC, CEP 88906-072, Brazil.
| |
Collapse
|
15
|
Pontes RB, Lisboa MRP, Pereira AF, Lino JA, de Oliveira FFB, de Mesquita AKV, de Freitas Alves BW, Lima-Júnior RCP, Vale ML. Involvement of Endothelin Receptors in Peripheral Sensory Neuropathy Induced by Oxaliplatin in Mice. Neurotox Res 2019; 36:688-699. [PMID: 31228092 DOI: 10.1007/s12640-019-00074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the participation of the endothelin ETA and ETB receptors and the effects of bosentan in oxaliplatin-induced peripheral sensory neuropathy (OIN) in mice. Adult male Swiss mice received 1 mg/kg of oxaliplatin intravenously, twice a week for 5 weeks. Dorsal root ganglia (DRG) and spinal cords were removed for evaluation of the endothelin ETA and ETB receptor expression. Afterwards, selective (BQ-123 and BQ-788; 10 nmol in 30 μL, intraplantarly) and non-selective (bosentan, 100 mg/kg, orally) antagonists were administered in order to evaluate the involvement of the endothelin receptors in OIN. Mechanical and thermal nociception tests were performed once a week for 56 days. Oxaliplatin induced mechanical and thermal hypersensitivity and increased the endothelin ETA receptor expression in both the DRG and spinal cord (P < 0.05). Endothelin ETB receptor expression was increased in the DRG (P < 0.05) but not in the spinal cord. Both endothelin ETA and ETB receptor selective antagonists partially prevented mechanical hyperalgesia in mice with OIN (P < 0.05). Moreover, bosentan prevented mechanical and thermal hypersensitivity in oxaliplatin-treated mice (P < 0.05). In conclusion, both endothelin ETA and ETB receptors seem to be involved in the OIN in mice and they should be considered possible targets for the management of this clinical feature.
Collapse
Affiliation(s)
- Renata Bessa Pontes
- Department of Physical Therapy, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-160, Brazil
| | - Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Juliana Arcanjo Lino
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-140, Brazil
| | - Francisco Fábio Bezerra de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil.
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
16
|
Differentially-Expressed miRNAs in Ectopic Stromal Cells Contribute to Endometriosis Development: The Plausible Role of miR-139-5p and miR-375. Int J Mol Sci 2018; 19:ijms19123789. [PMID: 30487429 PMCID: PMC6321240 DOI: 10.3390/ijms19123789] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
microRNA (miRNA) expression level alterations between endometrial tissue and endometriotic lesions indicate their involvement in endometriosis pathogenesis. However, as both endometrium and endometriotic lesions consist of different cell types in various proportions, it is not clear which cells contribute to variability in miRNA levels and the overall knowledge about cell-type specific miRNA expression in ectopic cells is scarce. Therefore, we utilized fluorescence-activated cell sorting to isolate endometrial stromal cells from paired endometrial and endometrioma biopsies and combined it with high-throughput sequencing to determine miRNA alterations in endometriotic stroma. The analysis revealed 149 abnormally expressed miRNAs in endometriotic lesions, including extensive upregulation of miR-139-5p and downregulation of miR-375 compared to eutopic cells. miRNA transfection experiments in the endometrial stromal cell line ST-T1b showed that the overexpression of miR-139-5p resulted in the downregulation of homeobox A9 (HOXA9) and HOXA10 expression, whereas the endothelin 1 (EDN1) gene was regulated by miR-375. The results of this study provide further insights into the complex molecular mechanisms involved in endometriosis pathogenesis and demonstrate the necessity for cell-type-specific analysis of ectopic tissues to understand the interactions between different cell populations in disease onset and progression.
Collapse
|
17
|
Liang Y, Liu D, Yang F, Pan W, Zeng F, Wu J, Xie H, Li J, Yao S. Perineural invasion in endometriotic lesions contributes to endometriosis-associated pain. J Pain Res 2018; 11:1999-2009. [PMID: 30310304 PMCID: PMC6165785 DOI: 10.2147/jpr.s168715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Recent studies have shown that abnormal distribution of pelvic nerves contributes to endometriosis-associated pain. However, the relationship between neurogenesis and pain severity in endometriosis still remains uncertain, which makes it an enigma for both gynecologists as well as neuropathologists. In this study, we tried to explore a special phenomenon, perineural invasion (PNI), in deep infiltrating endometriosis (DIE) and investigated the correlation between PNI- and DIE-associated pain. Patients and methods The study was conducted in the Department of Obstetrics and Gynecology of the First Affiliated Hospital of Sun Yat-sen University from June 2012 to January 2015. In total, 64 patients with DIE were enrolled. They received laparoscopically surgical resection of endometriotic lesions. The Kruskal–Wallis and Mann–Whitney tests were used for comparisons of enumeration data. Spearman rank correlation was used for linear analysis. Results Immunohistochemical analysis demonstrated that PNI was commonly found in DIE lesions. Patients were divided into PNI (+) group and PNI (−) group. The visual analog scale scores of dysmenorrhea, dyspareunia, and chronic pelvic pain were higher in PNI (+) group than in PNI (−) group. Also, we found significantly increased density of newly formed nerve fibers as well as microvessels in lesions of PNI (+) group. Further, double immunofluorescence showed a closely spatial nerve–vessel network in the endometriotic lesion of PNI (+) group. More importantly, correlation analysis revealed positive relation between the density of newly formed nerve fibers in the lesion and the density of microvessels in lesions of PNI (+) group. Conclusion This study suggests that PNI in endometriotic lesions plays an important role in endometriosis-associated pain, mainly through a mechanism named “neuroangiogenesis”.
Collapse
Affiliation(s)
- Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,
| | - Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,
| | - Wenwei Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,
| | - Feitianzhi Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,
| | - Jinjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyu Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaying Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,
| |
Collapse
|