1
|
Li D, Yang K, Li J, Xu X, Gong L, Yue S, Wei H, Yue Z, Wu Y, Yin S. Single-cell sequencing reveals glial cell involvement in development of neuropathic pain via myelin sheath lesion formation in the spinal cord. J Neuroinflammation 2024; 21:213. [PMID: 39217340 PMCID: PMC11365210 DOI: 10.1186/s12974-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP), which results from injury or lesion of the somatosensory nervous system, is intimately associated with glial cells. The roles of microglia and astrocytes in NP have been broadly described, while studies on oligodendrocytes have largely focused on axonal myelination. The mechanisms of oligodendrocytes and their interactions with other glial cells in NP development remain uncertain. METHODS To explore the function of the interaction of the three glial cells and their interactions on myelin development in NP, we evaluated changes in NP and myelin morphology after a chronic constriction injury (CCI) model in mice, and used single-cell sequencing to reveal the subpopulations characteristics of oligodendrocytes, microglia, and astrocytes in the spinal cord tissues, as well as their relationship with myelin lesions; the proliferation and differentiation trajectories of oligodendrocyte subpopulations were also revealed using pseudotime cell trajectory and RNA velocity analysis. In addition, we identified chemokine ligand-receptor pairs between glial cells by cellular communication and verified them using immunofluorescence. RESULTS Our study showed that NP peaked on day 7 after CCI in mice, a time at which myelin lesions were present in both the spinal cord and sciatic nerve. Oligodendrocytes, microglia, and astrocytes subpopulations in spinal cord tissue were heterogeneous after CCI and all were involved in suppressing the process of immune defense and myelin production. In addition, the differentiation trajectory of oligodendrocytes involved a unidirectional lattice process of OPC-1-Oligo-9, which was arrested at the Oligo-2 stage under the influence of microglia and astrocytes. And the CADM1-CADM1, NRP1-VEGFA interactions between glial cells are enhanced after CCI and they had a key role in myelin lesions and demyelination. CONCLUSIONS Our study reveals the close relationship between the differentiation block of oligodendrocytes after CCI and their interaction with microglia and astrocytes-mediated myelin lesions and NP. CADM1/CADM1 and NRP-1/VEGFA may serve as potential therapeutic targets for use in the treatment of NP.
Collapse
Affiliation(s)
- Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kaihong Yang
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Jinlu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lanlan Gong
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Zhenyu Yue
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Yikun Wu
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Sen Yin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Sotelo-Hitschfeld P, Bernal L, Nazeri M, Renthal W, Brauchi S, Roza C, Zimmermann K. Comparative Gene Signature of Nociceptors Innervating Mouse Molar Teeth, Cranial Meninges, and Cornea. Anesth Analg 2024; 139:226-234. [PMID: 38236765 DOI: 10.1213/ane.0000000000006816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
BACKGROUND The trigeminal ganglion (TG) collects afferent sensory information from various tissues. Recent large-scale RNA sequencing of neurons of the TG and dorsal root ganglion has revealed a variety of functionally distinct neuronal subpopulations, but organ-specific information is lacking. METHODS To link transcriptomic and tissue-specific information, we labeled small-diameter neurons of 3 specific subpopulations of the TG by local application of lipophilic carbocyanine dyes to their innervation site in the dental pulp, cornea, and meninges (dura mater). We then collected mRNA-sequencing data from fluorescent neurons. Differentially expressed genes (DEGs) were analyzed and subjected to downstream gene set enrichment analysis (GSEA), and ion channel profiling was performed. RESULTS A total of 10,903 genes were mapped to the mouse genome (>500 reads). DEG analysis revealed 18 and 81 genes with differential expression (log 2 fold change > 2, Padj < .05) in primary afferent neurons innervating the dental pulp (dental primary afferent neurons [DPAN]) compared to those innervating the meninges (meningeal primary afferent neurons [MPAN]) and the cornea (corneal primary afferent neurons [CPAN]). We found 250 and 292 genes differentially expressed in MPAN as compared to DPAN and to CPAN, and 21 and 12 in CPAN as compared to DPAN and MPAN. Scn2b had the highest log 2 fold change when comparing DPAN versus MPAN and Mmp12 was the most prominent DEG when comparing DPAN versus CPAN and, CPAN versus MPAN. GSEA revealed genes of the immune and mitochondrial oxidative phosphorylation system for the DPAN versus MPAN comparison, cilium- and ribosome-related genes for the CPAN versus DPAN comparison, and respirasome, immune cell- and ribosome-related gene sets for the CPAN versus MPAN comparison. DEG analysis for ion channels revealed no significant differences between the neurons set except for the sodium voltage-gated channel beta subunit 2, Scn2b . However, in each tissue a few ion channels turned up with robust number of reads. In DPAN, these were Cacna1b , Trpv2 , Cnga4 , Hcn1 , and Hcn3 , in CPAN Trpa1 , Trpv1 , Cacna1a , and Kcnk13 and in MPAN Trpv2 and Scn11a . CONCLUSIONS Our study uncovers previously unknown differences in gene expression between sensory neuron subpopulations from the dental pulp, cornea, and dura mater and provides the basis for functional studies, including the investigation of ion channel function and their suitability as targets for tissue-specific analgesia.
Collapse
Affiliation(s)
- Pamela Sotelo-Hitschfeld
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Physiology and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de Chile, Valdivia, Chile
| | - Laura Bernal
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Masoud Nazeri
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sebastian Brauchi
- Institute of Physiology and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Katharina Zimmermann
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Maxion A, Kutafina E, Dohrn MF, Sacré P, Lampert A, Tigerholm J, Namer B. A modelling study to dissect the potential role of voltage-gated ion channels in activity-dependent conduction velocity changes as identified in small fiber neuropathy patients. Front Comput Neurosci 2023; 17:1265958. [PMID: 38156040 PMCID: PMC10752960 DOI: 10.3389/fncom.2023.1265958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.
Collapse
Affiliation(s)
- Anna Maxion
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
| | - Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University Aachen, Aachen, Germany
| | - Jenny Tigerholm
- Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Schmelz M. Lessons learned - Moving on from QST sensory profiles. Scand J Pain 2022; 22:670-672. [PMID: 36130022 DOI: 10.1515/sjpain-2022-0088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Quantitative sensory testing (QST) has been optimized to diagnose in particular small fiber neuropathy and has been successfully used for decades. "Sensory phenotypes" have been derived from the QST data in an attempt to stratify patients with chronic pain and to gain mechanistic insights. However, studies consistently show that there is no difference in sensory phenotypes between neuropathy patients with and without pain and no successful stratification has been shown using the current version of "sensory phenotypes". Thus, after falsification of the initial hypothesis it is time to focus on more promising approaches.
Collapse
Affiliation(s)
- Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Geramifard N, Lawson J, Cogan SF, Black BJ. A Novel 3D Helical Microelectrode Array for In Vitro Extracellular Action Potential Recording. MICROMACHINES 2022; 13:1692. [PMID: 36296045 PMCID: PMC9611359 DOI: 10.3390/mi13101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in cell and tissue engineering have enabled long-term three-dimensional (3D) in vitro cultures of human-derived neuronal tissues. Analogous two-dimensional (2D) tissue cultures have been used for decades in combination with substrate integrated microelectrode arrays (MEA) for pharmacological and toxicological assessments. While the phenotypic and cytoarchitectural arguments for 3D culture are clear, 3D MEA technologies are presently inadequate. This is mostly due to the technical challenge of creating vertical electrical conduction paths (or 'traces') using standardized biocompatible materials and fabrication techniques. Here, we have circumvented that challenge by designing and fabricating a novel helical 3D MEA comprised of polyimide, amorphous silicon carbide (a-SiC), gold/titanium, and sputtered iridium oxide films (SIROF). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) testing confirmed fully-fabricated MEAs should be capable of recording extracellular action potentials (EAPs) with high signal-to-noise ratios (SNR). We then seeded induced pluripotent stems cell (iPSC) sensory neurons (SNs) in a 3D collagen-based hydrogel integrated with the helical MEAs and recorded EAPs for up to 28 days in vitro from across the MEA volume. Importantly, this highly adaptable design does not intrinsically limit cell/tissue type, channel count, height, or total volume.
Collapse
Affiliation(s)
- Negar Geramifard
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jennifer Lawson
- Biomedical Engineering Department, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Stuart F. Cogan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Bryan James Black
- Biomedical Engineering Department, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
6
|
Roza C, Bernal L. Electrophysiological characterization of ectopic spontaneous discharge in axotomized and intact fibers upon nerve transection: a role in spontaneous pain? Pflugers Arch 2022; 474:387-396. [PMID: 35088129 DOI: 10.1007/s00424-021-02655-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Many patients experience positive symptoms after traumatic nerve injury. Despite the increasing number of experimental studies in models of peripheral neuropathy and the knowledge acquired, most of these patients lack an effective treatment for their chronic pain. One possible explanation might be that most of the preclinical studies focused on the development of mechanical or thermal allodynia/hyperalgesia, neglecting that most of the patients with peripheral neuropathies complain mostly about spontaneous forms of pains. Here, we summarize the aberrant electrophysiological behavior of peripheral nerve fibers recorded in experimental models, the underlying pathophysiological mechanisms, and their relationship with the symptoms reported by patients. Upon nerve section, axotomized but also intact fibers develop ectopic spontaneous activity. Most interestingly, a proportion of axotomized fibers might present receptive fields in the skin far beyond the site of damage, indicative of a functional cross talk between neuromatose and intact fibers. All these features can be linked with some of the symptoms that neuropathic patients experience. Furthermore, we spotlight the consequence of primary afferents with different patterns of spontaneous discharge on the neural code and its relationship with chronic pain states. With this article, readers will be able to understand the pathophysiological mechanisms that might underlie some of the symptoms that experience neuropathic patients, with a special focus on spontaneous pain.
Collapse
Affiliation(s)
- Carolina Roza
- Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
7
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
8
|
Review of Literatures: Physiology of Orofacial Pain in Dentistry. eNeuro 2021; 8:ENEURO.0535-20.2021. [PMID: 33820801 PMCID: PMC8086974 DOI: 10.1523/eneuro.0535-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/14/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
The objective of this review of the literature is to summarize the physiology of orofacial pain in dentistry, particularly physiology of the pain pathway and molecular mechanisms on pathophysiology of pain, on account of new insights into classification of orofacial pain related diseases. This article will also focus on possible mechanisms of neuropathic orofacial pain which is distinguished from other types of pain.
Collapse
|
9
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
10
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
EPAC1 and EPAC2 promote nociceptor hyperactivity associated with chronic pain after spinal cord injury. NEUROBIOLOGY OF PAIN 2019; 7:100040. [PMID: 31890991 PMCID: PMC6926371 DOI: 10.1016/j.ynpai.2019.100040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). Pharmacological inhibition of EPAC1 or 2 in a rat SCI model was sufficient to reverse SCI-induced nociceptor hyperactivity, indicating that EPAC1 and 2 signaling activity are complementary, with both required to maintain hyperactivity. However, EPAC activation was not sufficient to induce similar hyperactivity in nociceptors from naïve rats, and we observed no change in EPAC protein expression after SCI. In the mouse SCI model, inhibition of both EPAC isoforms through a combination of pharmacological inhibition and genetic deletion was required to reverse SCI-induced nociceptor hyperactivity. This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.
Collapse
|
12
|
Zhou Y, Wang J, Meng Z, Zhou S, Peng J, Chen S, Wang Q, Sun K. Pharmacology of Ivabradine and the Effect on Chronic Heart Failure. Curr Top Med Chem 2019; 19:1878-1901. [PMID: 31400267 DOI: 10.2174/1568026619666190809093144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
Chronic Heart Failure (CHF) is a complex clinical syndrome with a high incidence worldwide. Although various types of pharmacological and device therapies are available for CHF, the prognosis is not ideal, for which, the control of increased Heart Rate (HR) is critical. Recently, a bradycardic agent, ivabradine, is found to reduce HR by inhibiting the funny current (If). The underlying mechanism states that ivabradine can enter the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and bind to the intracellular side, subsequently inhibiting the If. This phenomenon can prolong the slow spontaneous phase in the diastolic depolarization, and thus, reduce HR. The clinical trials demonstrated the significant effects of the drug on reducing HR and improving the symptoms of CHF with fewer adverse effects. This review primarily introduces the chemical features and pharmacological characteristics of ivabradine and the mechanism of treating CHF. Also, some expected therapeutic effects on different diseases were also concluded. However, ivabradine, as a typical If channel inhibitor, necessitates additional research to verify its pharmacological functions.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, the Second Affiliated Hospital&Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiayu Peng
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
13
|
Bernal L, Cisneros E, García-Magro N, Roza C. Immunostaining in whole-mount lipid-cleared peripheral nerves and dorsal root ganglia after neuropathy in mice. Sci Rep 2019; 9:8374. [PMID: 31182787 PMCID: PMC6558043 DOI: 10.1038/s41598-019-44897-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
Immunohistochemical characterization of primary afferent fibers (intact or after nerve damage) is traditionally performed in thin sections from dorsal root ganglia (DRGs) or in teased fibers, as light scattering in whole-mounts compromises visualization. These procedures are time-consuming, require specific equipment and advanced experimental skills. Lipid-clearing techniques are increasing in popularity, but they have never been used for the peripheral nervous system. We established a modified, inexpensive clearing method based on lipid-removal protocols to make transparent peripheral nerve tissue (inCLARITY). We compared retrograde-labeling and free-floating immunostaining with cryo-sections. Confocal microscopy on whole-mount transparent DRGs showed neurons marked with retrograde tracers applied to experimental neuromas (Retrobeads, Fluoro-ruby, Fluoro-emerald, DiI, and Fluoro-gold). After immunostaining with calcitonin gene-related peptide (peptidergic) or isolectin IB4 (non-peptidergic), nociceptors were visualized. Immunostaining in transparent whole-mount nerves allows simultaneous evaluation of the axotomized branches containing the neuroma and neighboring intact branches as they can be mounted preserving their anatomical disposition and fiber integrity. The goal of our study was to optimize CLARITY for its application in peripheral nerve tissues. The protocol is compatible with the use of retrograde tracers and improves immunostaining outcomes when compared to classical cryo-sectioning, as lack of lipids maximizes antibody penetration within the tissue.
Collapse
Affiliation(s)
- L Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain
| | - E Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain.,Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain
| | - N García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029, Madrid, Spain
| | - C Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain.
| |
Collapse
|
14
|
Roza C, Campos-Sandoval JA, Gómez-García MC, Peñalver A, Márquez J. Lysophosphatidic Acid and Glutamatergic Transmission. Front Mol Neurosci 2019; 12:138. [PMID: 31191247 PMCID: PMC6546900 DOI: 10.3389/fnmol.2019.00138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA1 which is the most prevalent receptor in human and mouse brain tissue. LPA1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.
Collapse
Affiliation(s)
- Carolina Roza
- Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Spain
| | - José A Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - María C Gómez-García
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Ana Peñalver
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
15
|
He JT, Li XY, Zhao X, Liu X. Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain. Rev Neurosci 2019; 30:639-649. [PMID: 30768426 DOI: 10.1515/revneuro-2018-0094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 01/14/2023]
Abstract
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are activated during hyperpolarization, and there is an inward flow of current, which is termed as hyperpolarization-activated current, Ih. Initially, these channels were identified on the pacemaker cells of the heart. Nowadays, these are identified on different regions of the nervous system, including peripheral nerves, dorsal root ganglia, dorsal horns, and different parts of the brain. There are four different types of HCN channels (HCN1–HCN4); however, HCN1 and HCN2 are more prominent. A large number of studies have shown that peripheral nerve injury increases the amplitude of Ih current in the neurons of the spinal cord and the brain. Moreover, there is an increase in the expression of HCN1 and HCN2 protein channels in peripheral axons and the spinal cord and brain regions in experimental models of nerve injury. Studies have also documented the pain-attenuating actions of selective HCN inhibitors, such as ivabradine and ZD7288. Moreover, certain drugs with additional HCN-blocking activities have also shown pain-attenuating actions in different pain models. There have been few studies documenting the relationship of HCN channels with other mediators of pain. Nevertheless, it may be proposed that the HCN channel activity is modulated by endogenous opioids and cyclo-oxygenase-2, whereas the activation of these channels may modulate the actions of substance P and the expression of spinal N-methyl-D-aspartate receptor subunit 2B to modulate pain. The present review describes the role and mechanisms of HCN ion channels in the development of neuropathic pain.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology , China-Japan Union Hospital, Jilin University , Changchun 130033, Jilin Province , China
| | - Xiao-Yan Li
- Department of Neurology , China-Japan Union Hospital, Jilin University , Changchun 130033, Jilin Province , China
| | - Xin Zhao
- Department of Paediatrics , The First Hospital of Jilin University , Changchun 130021, Jilin Province , China
| | - Xiaoliang Liu
- Cancer Center, The First Hospital of Jilin University , 126 Xiantai Street , Changchun 130033, Jilin Province , China
| |
Collapse
|