1
|
Tekin M, Ceylan KB, Ozturk M. The effects of smoking on pain scores, vital signs, and analgesic consumption in patients undergoing tympanomastoidectomy surgery. Tob Induc Dis 2024; 22:TID-22-110. [PMID: 38887600 PMCID: PMC11181299 DOI: 10.18332/tid/189301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION In this study, we investigate the effects of smoking on pain scores, vital signs, and analgesic consumption in the intraoperative and postoperative period in patients undergoing tympanomastoidectomy surgery. METHODS A total of 100 patients with American Society of Anesthesiologists I-II status, aged 18-55 years, and who were planned to undergo tympanomastoidectomy surgery were divided into two groups: smokers (Group 1) and non-smokers (Group 2). The patients were compared for preoperative, intraoperative, and 24-hour postoperative carboxyhemoglobin, blood pressure, oxygen saturation, respiratory rate, heart rate, pain intensity and verbal numerical rating scales, the extent of patient-controlled tramadol dose, nausea, and vomiting. RESULTS There were 50 individuals in each group. Postoperative analgesic consumption and pain scores were higher in Group 1, and the first postoperative pain was felt earlier. Furthermore, in Group 1, preoperative carboxyhemoglobin levels and postoperative nausea were statistically higher before, after, and at the tenth minute after induction, whereas oxygen saturation was lower. The two groups had no statistical difference regarding intraoperative and postoperative vital signs. Postoperative analgesic consumption was not affected by age or gender. CONCLUSIONS Smoking changes postoperative pain management, especially for this kind of operation, and these patients feel more pain and need more postoperative analgesic doses. Therefore, effective postoperative pain control should take account of smoking behavior, and analgesic doses may need to be adjusted for patients who smoke.
Collapse
Affiliation(s)
- Murat Tekin
- Department of Anesthesiology and Reanimation, Kocaeli University, Kocaeli, Türkiye
| | - Kadriye B. Ceylan
- Department of Anesthesiology and Reanimation, Kocaeli University, Kocaeli, Türkiye
| | - Murat Ozturk
- Department of Otorhinolaryngology, Kocaeli University, Kocaeli, Türkiye
| |
Collapse
|
2
|
Graur A, Haymond A, Lee KH, Viscarra F, Russo P, Luchini A, Paige M, Bermudez-Diaz I, Kabbani N. Protein Painting Mass Spectrometry in the Discovery of Interaction Sites within the Acetylcholine Binding Protein. ACS Chem Neurosci 2024; 15:2322-2333. [PMID: 38804618 PMCID: PMC11157483 DOI: 10.1021/acschemneuro.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The Aplysia californica acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs. In this study, we optimized protein-painting-based mass spectrometry to identify regions of interaction between the Ac-AChBP and several nAChR ligands. Using molecular dyes that adhere to the surface of a solubilized Ac-AChBP complex, we identified amino acid residues that constitute a contact site within the Ac-AChBP for α-bungarotoxin, choline, nicotine, and amyloid-β 1-42. By integrating innovation in protein painting mass spectrometry with computational structural modeling, we present a new experimental tool for analyzing protein interactions of the nAChR.
Collapse
Affiliation(s)
- Alexandru Graur
- School
of Systems Biology, George Mason University, Fairfax, Virginia 22030, United States
| | - Amanda Haymond
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Kyung Hyeon Lee
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 20110, United States
| | - Franco Viscarra
- Department
of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
- Structural
Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Paul Russo
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Mikell Paige
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 20110, United States
| | - Isabel Bermudez-Diaz
- Department
of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
| | - Nadine Kabbani
- School
of Systems Biology, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
3
|
Li WW, Shi XY, Wei T, Guo TZ, Kingery WS, Clark JD. Alpha-7 Nicotinic Acetylcholine Receptor Activation Inhibits Trauma Induced Pronociceptive Autoimmune Responses. THE JOURNAL OF PAIN 2024; 25:104422. [PMID: 37951284 PMCID: PMC11058031 DOI: 10.1016/j.jpain.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Both autonomic nervous system dysfunction and immune system activation are characteristic of chronic pain after limb injuries. Cholinergic agonists reduce immune system activation in many settings. We hypothesized, therefore, that alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist administration would reduce nociceptive and immune changes after tibia fracture and cast immobilization in mice. Fracture mice were treated with either vehicle, a low (.2 mg/kg) dose, or a high (1 mg/kg) dose of the selective α7nAChR agonist PNU-282987 for 4 weeks. We assessed hindpaw allodynia and weight bearing as behavioral outcomes. The assessment of adaptive immune responses included regional lymph node hypertrophy, germinal center formation, α7nAChR expression, and IgM deposition. Assessment of innate immune system activation focused on IL-1β and IL-6 generation in fractured hindlimb skin. We observed that mechanical allodynia and unweighting were alleviated by PNU-282987 treatment. Drug treatment also reduced popliteal lymph node hypertrophy and germinal center formation. Immunohistochemical studies localized α7nAChR to germinal center B lymphocytes, and this expression increased after fracture. Analysis of fracture limb hindpaw skin demonstrated increased inflammatory mediator (IL-1β and IL-6) levels and IgM deposition, which were abrogated by PNU-282987. Serum analyses demonstrated fracture-induced IgM reactivity against keratin 16, histone 3.2, GFAP, and NMDAR-2B. Administration of PNU-282987 reduced the enhancement of IgM reactivity. Collectively, these data suggest that the α7nAChR is involved in regulating posttraumatic innate and adaptive immune responses and the associated nociceptive sensitization. PERSPECTIVE: These studies evaluate the effects of a selective α7nAChR agonist in a tibial fracture/cast immobilization model of limb pain. Administration of the drug reduced nociceptive and functional changes 4 weeks after injury. These novel findings suggest that well-tolerated α7nAChR agonists may be viable analgesics for chronic pain after limb injuries.
Collapse
Affiliation(s)
- Wen-wu Li
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Xiao-you Shi
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - J. David Clark
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
- Anesthesiology Service Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| |
Collapse
|
4
|
Zhou YQ, Liu DQ, Liu C, Xu AJ, Tian YK, Mei W, Tian XB. Targeting α7 nicotinic acetylcholine receptors for chronic pain. Front Mol Neurosci 2022; 15:970040. [PMID: 36245927 PMCID: PMC9561890 DOI: 10.3389/fnmol.2022.970040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Despite rapid advances in the field of chronic pain, it remains extremely challenging in the clinic. Pain treatment strategies have not improved for decades as opioids remain the main prescribed drugs for chronic pain management. However, long-term use of opioids often leads to detrimental side effects. Therefore, uncovering the mechanisms underlying the development and maintenance of chronic pain may aid the discovery of novel therapeutics to benefit patients with chronic pain. Substantial evidence indicates downregulation of α7 nicotinic acetylcholine receptors (α7 nAChR) in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in rodent models of chronic pain. Moreover, our recent study and results from other laboratories demonstrate that potentiation of α7 nAChR attenuates pain behaviors in various murine models of chronic pain. This review summarized and discussed the preclinical evidence demonstrating the therapeutic potential of α7 nAChR agonists and allosteric modulators in chronic pain. This evidence indicates that potentiation of α7 nAChR is beneficial in chronic pain, mostly by alleviating neuroinflammation. Overall, α7 nAChR-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
|
5
|
Bagdas D, Sevdar G, Gul Z, Younis R, Cavun S, Tae HS, Ortells MO, Arias HR, Gurun MS. (E)-3-furan-2-yl-N-phenylacrylamide (PAM-4) decreases nociception and emotional manifestations of neuropathic pain in mice by α7 nicotinic acetylcholine receptor potentiation. Neurol Res 2021; 43:1056-1068. [PMID: 34281483 DOI: 10.1080/01616412.2021.1949684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical intervention of pain is often accompanied by changes in affective behaviors, so both assays of affective and sensorial aspects of nociception play an important role in the development of novel analgesics. Although positive allosteric modulation (PAM) of α7 nicotinic acetylcholine receptors (nAChRs) has been recognized as a novel approach for the relief of sensorial aspects of pain, their effects on affective components of pain remain unclear. Therefore, we investigated whether PAM-4, a highly selective α7-nAChR PAM, attenuates inflammatory and neuropathic pain, as well as the concomitant depressive/anxiety comorbidities. The anti-nociceptive activity of PAM-4 was assessed in mice using the formalin test and chronic constriction injury (CCI)-induced neuropathic pain model. The anxiolytic- and antidepressant-like activity of PAM-4 was evaluated using the marble burying test and forced swimming test. Acute systemic administration of PAM-4 dose-dependently reversed formalin-induced paw licking behavior and CCI-induced mechanical allodynia without development of any motor impairment. PAM-4 reversed the decreased swimming time and number of buried marbles in CCI-treated mice, suggesting that this ligand attenuates chronic pain-induced depression-like behavior and anxiogenic-like effects. The effects of PAM-4 were inhibited by the α7-selective antagonist methyllycaconitine, indicating molecular mechanism mediated by α7-nAChRs. Indeed, electrophysiological recordings showed the PAM-4 enhances human α7 nAChRs with higher potency and efficacy compared to rat α7 nAChRs. These findings suggest that PAM-4 reduces both sensorial and affective behaviors induced by chronic pain in mice by α7-nAChR potentiation. PAM-4 deserves further investigations for the management of chronic painful conditions with comorbidities.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, USA
| | - Gulce Sevdar
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Rabha Younis
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sinan Cavun
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Moron, Argentina
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Mine Sibel Gurun
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
6
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Balayssac D. [Relation between tobacco smoking and pain: A narrative review of the scientific literature]. Rev Mal Respir 2021; 38:269-277. [PMID: 33648775 DOI: 10.1016/j.rmr.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/20/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Tobacco smoking and pain have an intimate, complex, two-way interaction. The purpose of this narrative review of the literature is to present what is currently understood about the relationship. STATE OF KNOWLEDGE Tobacco smoking (and the associated chronic exposure to nicotine) has been defined as a risk factor for chronic pain, involving nociceptive sensitisation. For people who smoke, pain will be both a motivational factor for tobacco consumption and a barrier to tobacco use cessation. Conversely, nicotine (acute exposure) has clearly demonstrated analgesic properties, mediated in particular by activation of nicotinic acetylcholine receptors. PERSPECTIVES The management of pain in people who smoke is still largely unaddressed, and further studies will be needed to develop effective strategies for tobacco use cessation in this context. Nicotine and modulators of nicotinic acetylcholine receptors represent innovative strategies for the discovery of new analgesics. CONCLUSIONS The effects of smoking on pain, chronic nociceptive sensitisation and acute analgesia, serve to maintain tobacco consumption via negative reinforcement. A holistic therapeutic strategy is necessary to maximise the likelihood of successful smoking cessation.
Collapse
Affiliation(s)
- D Balayssac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Laboratoire de toxicologie, CHU Clermont-Ferrand, Direction de la recherche clinique et de l'innovation, 63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins (Basel) 2019; 11:toxins11080449. [PMID: 31370176 PMCID: PMC6723473 DOI: 10.3390/toxins11080449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.
Collapse
|
9
|
Shimizu R, Ibaragi S, Eguchi T, Kuwajima D, Kodama S, Nishioka T, Okui T, Obata K, Takabatake K, Kawai H, Ono K, Okamoto K, Nagatsuka H, Sasaki A. Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol 2018; 54:283-294. [PMID: 30431077 DOI: 10.3892/ijo.2018.4631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor (EGF) is overexpressed in many cancers and is associated with worse prognosis. EGF binds to its cell surface receptor (EGFR), which induces EGFR phosphorylation. Phosphorylated EGFR (p‑EGFR) is translocated into the nucleus, which increases cancer cell activity. Nicotine, which is one of the main components of tobacco, is absorbed through pulmonary alveoli and mucosal epithelia in the head and neck region by smoking and moves into the blood. Nicotine in blood binds to nicotinic acetylcholine receptor (nAChR) in the central nervous system and serves a crucial role in tobacco addiction. Although nAChR localization is thought to be limited in the nervous system, nAChR is present in a wide variety of non‑neuronal cells, including cancer cells. Recent studies suggest that nicotine contributes to the metastasis and resistance to anti‑cancer drugs of various cancer cells. However, it remains unknown whether head and neck squamous cell carcinoma (HNSCC) cells can utilize nicotine‑nAChR signaling to metastasize and acquire resistance to anti‑cancer drugs, even though the mucosal epithelia of the head and neck region are the primary sites of exposure to tobacco smoke. To the best of our knowledge, the present study is the first to demonstrate the role of nicotine in metastasis and anti‑EGFR‑therapy resistance of HNSCC. The present findings demonstrated that nicotine increased proliferation, migration, invasion, p‑EGFR nuclear translocation and protein kinase B (Akt) phosphorylation in HNSCC cells. It was also demonstrated that nicotine restored cetuximab‑inhibited proliferation, migration and invasion of HNSCC cells. Finally, an in vivo experiment revealed that nicotine increased lymph node metastasis of xenografted tumors, whereas an nAChR inhibitor suppressed lymph node metastasis and p‑EGFR nuclear localization of xenografted tumors. Taken together, these results demonstrated that nicotine induced nuclear accumulation of p‑EGFR, and activation of Akt signaling. These signaling pathways elevated the activities of HNSCC cells, causing lymph node metastasis and serving a role in cetuximab resistance.
Collapse
Affiliation(s)
- Rieko Shimizu
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Takanori Eguchi
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Daisuke Kuwajima
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Shinichi Kodama
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Takashi Nishioka
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980‑8575, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| |
Collapse
|