1
|
Kold S, Graven-Nielsen T. Modulation of central pain mechanisms using high-definition transcranial direct current stimulation: A double-blind, sham-controlled study. Eur J Pain 2023; 27:303-315. [PMID: 36451616 PMCID: PMC10107535 DOI: 10.1002/ejp.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The use of high-definition transcranial direct current stimulation (HD-tDCS) has shown analgesic effects in some chronic pain patients, but limited anti-nociceptive effects in healthy asymptomatic subjects. METHODS This double-blinded sham-controlled study assessed the effects of HD-tDCS applied on three consecutive days on central pain mechanisms in healthy participants with (N = 40) and without (N = 40) prolonged experimental pain induced by intramuscular injection of nerve growth factor into the right hand on Day 1. Participants were randomly assigned to Sham-tDCS (N = 20 with pain, N = 20 without) or Active-tDCS (N = 20 with pain, N = 20 without) targeting simultaneously the primary motor cortex and dorsolateral prefrontal cortex for 20 min with 2 mA stimulation intensity. Central pain mechanisms were assessed by cuff algometry on the legs measuring pressure pain sensitivity, temporal summation of pain (TSP) and conditioned pain modulation (CPM), at baseline and after HD-tDCS on Day 2 and Day 3. Based on subject's assessment of received HD-tDCS (sham or active), they were effectively blinded. RESULTS Compared with Sham-tDCS, Active-tDCS did not significantly reduce the average NGF-induced pain intensity. Tonic pain-induced temporal summation at Day 2 and Day 3 was significantly lower in the NGF-pain group under Active-tDCS compared to the pain group with Sham-tDCS (p ≤ 0.05). No significant differences were found in the cuff pressure pain detection/tolerance thresholds or CPM effect across the 3 days of HD-tDCS in any of the four groups. CONCLUSION HD-tDCS reduced the facilitation of TSP caused by tonic pain suggesting that efficacy of HD-tDCS might depend on the presence of sensitized central pain mechanisms.
Collapse
Affiliation(s)
- Sebastian Kold
- Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
2
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
3
|
Vo L, Ilich N, Fujiyama H, Drummond PD. Anodal Transcranial Direct Current Stimulation Reduces Secondary Hyperalgesia Induced by low Frequency Electrical Stimulation in Healthy Volunteers. THE JOURNAL OF PAIN 2021; 23:305-317. [PMID: 34500109 DOI: 10.1016/j.jpain.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to determine whether transcranial direct current stimulation (tDCS) reduced pain and signs of central sensitization induced by low frequency electrical stimulation in healthy volunteers. Thirty-nine participants received tDCS stimulation under 4 different conditions: anodal tDCS of the primary motor cortex (M1), anodal tDCS of the dorsolateral prefrontal cortex (DLPFC), anodal tDCS over M1 and DLPFC concurrently, and sham tDCS. Participants were blind to the tDCS condition. The order of the conditions was randomized among participants. Pain ratings to pinpricks, the current level that evoked moderate pain, and pain induced by low frequency electrical stimulation were assessed in the forearm by an experimenter who was blind to the tDCS conditions. Anodal tDCS at M1 increased the current level that evoked moderate pain compared to sham and other conditions. Anodal tDCS of DLPFC completely abolished secondary hyperalgesia. Unexpectedly, however, concurrent anodal tDCS over M1 and DLPFC did not reduce pain or hyperalgesia more than M1 alone or DLPFC alone. Overall, these findings suggest that anodal tDCS over M1 suppresses pain, and that anodal tDCS over DLPFC modulates secondary hyperalgesia (a sign of central sensitization) in healthy participants. PERSPECTIVE: Anodal transcranial current stimulation (atDCS) at the left motor cortex and the dorsolateral prefrontal cortex increased the electrically-evoked pain threshold and reduced secondary hyperalgesia in healthy participants. Replication of this study in chronic pain populations may open more avenues for chronic pain treatment.
Collapse
Affiliation(s)
- Lechi Vo
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia.
| | - Nicole Ilich
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia
| | - Hakuei Fujiyama
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia
| |
Collapse
|
4
|
Mehesz E, Karoui H, Strutton PH, Hughes SW. Exposure to an Immersive Virtual Reality Environment can Modulate Perceptual Correlates of Endogenous Analgesia and Central Sensitization in Healthy Volunteers. THE JOURNAL OF PAIN 2021; 22:707-714. [PMID: 33465506 DOI: 10.1016/j.jpain.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. CPM and acute heat pain thresholds were assessed before and during VR/sham exposure in the absence of any sensitization. In a follow-on study, we used the cutaneous high frequency stimulation model of central sensitization and measured changes in mechanical pain sensitivity in an area of heterotopic sensitization before and during VR/sham exposure. There was an increase in CPM efficiency during the VR condition compared to baseline (P < .01). In the sham condition, there was a decrease in CPM efficiency compared to baseline (P < .01) and the real VR condition (P < .001). Neither real nor sham VR had any effect on pain ratings reported during the conditioning period or on heat pain threshold. There was also an attenuation of mechanical pain sensitivity during the VR condition indicating a lower sensitivity compared to sham (P < .05). We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. PERSPECTIVE: This study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
Collapse
Affiliation(s)
- Erzsebet Mehesz
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hajer Karoui
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Paul H Strutton
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sam W Hughes
- The Pain Neuroplasticity and Modulation Laboratory, Brain Research and Imaging Centre (BRIC), School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
5
|
Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic review and meta-analysis. Pain 2021; 161:1955-1975. [PMID: 32453135 DOI: 10.1097/j.pain.0000000000001893] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.
Collapse
|
6
|
García-Barajas G, Serrano-Muñoz D, Gómez-Soriano Pt J, Avendaño-Coy J, Fernández-Carnero J, García AM, Segura-Fragosa A, Taylor J. Efficacy of anodal suboccipital direct current stimulation for endogenous pain modulation and tonic thermal pain control in healthy participants: a randomised controlled clinical trial. PAIN MEDICINE 2021; 22:2908-2917. [PMID: 33822227 DOI: 10.1093/pm/pnab125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The aim of this study was to assess whether anodal DCS applied to the suboccipital (SO) target area could potentiate antinociception assessed primarily with conditioned pain modulation of tonic thermal test stimuli. DESIGN Randomised double-blinded control trial. SETTING Rehabilitation hospital. SUBJECTS Healthy participants. METHODS Forty healthy participants were randomized to receive either SO-DCS or M1-DCS. The 20-minute 1.5mA anodal or sham DCS intervention were applied to each participant in randomised order during two test sessions. The primary outcome measure included heterotopic cold-pressor conditioned pain modulation (CPM) of tonic heat pain. Secondary measures included pressure pain threshold and tonic thermal pain intensity. RESULTS Heterotopic CPM of tonic heat pain intensity was unaffected by either SO-DCS or active M1, including the secondary measures of pressure pain threshold and tonic thermal pain intensity. Although low-power non-significant interactions were identified for DCS intervention (active versus sham) and time (before and after), a significant within-group inhibition of tonic cold pain was identified following SO-DCS (p = 0.011, mean [SD]: -0.76±0.88 points) and M1-DCS (p < 0.002: -0.84±0.82 points), without a significant change following sham DCS. CONCLUSIONS Although heterotopic CPM was not facilitated with either SO-DCS or M1-DCS, a general significant inhibition of tonic cold pain intensity was demonstrated following both interventions. The general effects of active DCS compared to sham on tonic cold pain-irrespective of the M1 or SO target-need to be confirmed using standard quantitative sensory testing.
Collapse
Affiliation(s)
- Guillermo García-Barajas
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.,Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Alcorcón, Spain
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, Toledo, Spain
| | - Julio Gómez-Soriano Pt
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, Toledo, Spain
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, Toledo, Spain
| | - Josue Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain.,La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain.,Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora, Universidad Rey Juan Carlos-Banco de Santander, Madrid, Spain
| | - Alvaro Megía García
- Biomechanical and Technical Aids Unit, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Gurdiel-Álvarez F, González-Zamorano Y, Lerma Lara S, Gómez-Soriano J, Taylor J, Romero JP, Gómez Jiménez M, Fernández-Carnero J. Effectiveness of Unihemispheric Concurrent Dual-Site Stimulation over M1 and Dorsolateral Prefrontal Cortex Stimulation on Pain Processing: A Triple Blind Cross-Over Control Trial. Brain Sci 2021; 11:188. [PMID: 33557028 PMCID: PMC7913659 DOI: 10.3390/brainsci11020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) of the motor cortex (M1) produces short-term inhibition of pain. Unihemispheric concurrent dual-site tDCS (UHCDS-tDCS) over the M1 and dorsolateral prefrontal cortex (DLPFC) has greater effects on cortical excitability than when applied alone, although its effect on pain is unknown. The aim of this study was to test if anodal UHCDS-tDCS over the M1 and DLPFC in healthy participants could potentiate conditioned pain modulation (CPM) and diminish pain temporal summation (TS). METHODS Thirty participants were randomized to receive a sequence of UHCDS-tDCS, M1-tDCS and sham-tDCS. A 20 min 0.1 mA/cm2 anodal or sham-tDCS intervention was applied to each participant during three test sessions, according to a triple-blind cross-over trial design. For the assessment of pain processing before and after tDCS intervention, the following tests were performed: tourniquet conditioned pain modulation (CPM), pressure pain temporal summation (TS), pressure pain thresholds (PPTs), pressure pain tolerance, mechanosensitivity and cold hyperalgesia. Motor function before and after tDCS intervention was assessed with a dynamometer to measure maximal isometric grip strength. RESULTS No statistically significant differences were found between groups for CPM, pressure pain TS, PPT, pressure pain tolerance, neural mechanosensitivity, cold hyperalgesia or grip strength (p > 0.05). CONCLUSIONS Neither UHCDS-tDCS nor M1-tDCS facilitated CPM or inhibited TS in healthy subjects following one intervention session.
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
| | - Sergio Lerma Lara
- Department of Physical Therapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (S.L.L.); (M.G.J.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, 45071 Toledo, Spain;
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
- Harris Manchester College, University of Oxford, Oxford OX1 3TD, UK
| | - Juan Pablo Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain;
- Brain Damage Unit, Beata María Ana Hospital, 28007 Madrid, Spain
| | - María Gómez Jiménez
- Department of Physical Therapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (S.L.L.); (M.G.J.)
| | - Josué Fernández-Carnero
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Department of Physical and Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28046 Madrid, Spain
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora, Universidad Rey Juan Carlos-Banco de Santander, 28922 Madrid, Spain
| |
Collapse
|
8
|
Hughes SW, Basra M, Chan C, Parr C, Wong F, Gomes S, Strutton PH. Capsaicin-Induced Changes in Electrical Pain Perception Threshold Can Be Used to Assess the Magnitude of Secondary Hyperalgesia in Humans. PAIN MEDICINE 2020; 21:2830-2838. [DOI: 10.1093/pm/pnaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Objectives
Areas of secondary hyperalgesia can be assessed using quantitative sensory testing (QST). Delivering noxious electrocutaneous stimulation could provide added benefit by allowing multiple measurements of the magnitude of hyperalgesia. We aimed to characterize the use of electrical pain perception (EPP) thresholds alongside QST as a means by which to measure changes in pain thresholds within an area of secondary mechanical hyperalgesia.
Methods
EPP and heat pain thresholds (HPTs) were measured at five distinct points at baseline and following 1% capsaicin cream application, one within a central zone and four within a secondary zone. Areas of secondary mechanical hyperalgesia were mapped using QST. In a further 14 participants, capsaicin-induced reduction in EPP thresholds was mapped using a radial lines approach across 24 points.
Results
There was a reduction in EPP threshold measured at the four points within the secondary zone, which was within the mapped area of mechanical secondary hyperalgesia. The magnitude of secondary hyperalgesia could be split into a mild (∼4% reduction) and severe (∼21% reduction) area within an individual subject. There was no reduction in HPT within the secondary zone, but there was a reduction in both HPT and EPP threshold within the primary zone. EPP mapping revealed differences in the magnitude and spread of hyperalgesia across all subjects.
Conclusions
Measuring capsaicin-induced reduction in EPP thresholds can be used to map hyperalgesic areas in humans. This semi-automated approach allows rapid assessment of the magnitude of hyperalgesia, both within an individual subject and across a study population.
Collapse
Affiliation(s)
- Sam W Hughes
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Meirvaan Basra
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Calvin Chan
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Callum Parr
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Felyx Wong
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Sofia Gomes
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Paul H Strutton
- Division of Surgery, Department of Surgery and Cancer, The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Hughes SW, Ward G, Strutton PH. Anodal transcranial direct current stimulation over the primary motor cortex attenuates capsaicin‐induced dynamic mechanical allodynia and mechanical pain sensitivity in humans. Eur J Pain 2020; 24:1130-1137. [DOI: 10.1002/ejp.1557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sam W. Hughes
- The Nick Davey Laboratory Faculty of Medicine Imperial College London London UK
| | - Grace Ward
- The Nick Davey Laboratory Faculty of Medicine Imperial College London London UK
| | - Paul H. Strutton
- The Nick Davey Laboratory Faculty of Medicine Imperial College London London UK
| |
Collapse
|
10
|
Attenuation of capsaicin-induced ongoing pain and secondary hyperalgesia during exposure to an immersive virtual reality environment. Pain Rep 2019; 4:e790. [PMID: 31984295 PMCID: PMC6903343 DOI: 10.1097/pr9.0000000000000790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/24/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: There is growing evidence that virtual reality (VR) can be used in the treatment of chronic pain conditions. However, further research is required to better understand the analgesic mechanisms during sensitised pain states. Objectives: We examined the effects of an immersive polar VR environment on capsaicin-induced ongoing pain and secondary hyperalgesia. We also investigated whether the degree of analgesia was related to baseline conditioned pain modulation (CPM) responses. Methods: Nineteen subjects had baseline CPM and electrical pain perception (EPP) thresholds measured before the topical application of capsaicin cream. Visual analogue scale ratings were measured to track the development of an ongoing pain state, and EPP thresholds were used to measure secondary hyperalgesia. The effects of a passive polar VR environment on ongoing pain and secondary hyperalgesia were compared with sham VR (ie, 2D monitor screen) in responders to capsaicin (n = 15). Results: Virtual reality was associated with a transient reduction in ongoing pain and an increase in EPP thresholds in an area of secondary hyperalgesia. Baseline CPM measurements showed a significant correlation with VR-induced changes in secondary hyperalgesia, but not with VR-induced changes in ongoing pain perception. There was no correlation between VR-induced changes in pain perception and VR-induced changes in secondary hyperalgesia. Conclusion: Virtual reality can reduce the perception of capsaicin-induced ongoing pain and secondary hyperalgesia. We also show that CPM may provide a means by which to identify individuals likely to respond to VR therapy.
Collapse
|
11
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|