1
|
Zurek NA, Ehsanian R, Goins AE, Adams IM, Petersen T, Goyal S, Shilling M, Westlund KN, Alles SRA. Electrophysiological Analyses of Human Dorsal Root Ganglia and Human Induced Pluripotent Stem Cell-derived Sensory Neurons From Male and Female Donors. THE JOURNAL OF PAIN 2024; 25:104451. [PMID: 38154622 PMCID: PMC11128351 DOI: 10.1016/j.jpain.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Human induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) and human dorsal root ganglia neurons (hDRG-N) are popular tools in the field of pain research; however, few groups make use of both approaches. For screening and analgesic validation purposes, important characterizations can be determined of the similarities and differences between hDRG-N and hiPSC-SNs. This study focuses specifically on the electrophysiology properties of hDRG-N in comparison to hiPSC-SNs. We also compared hDRG-N and hiPSC-SNs from both male and female donors to evaluate potential sex differences. We recorded neuronal size, rheobase, resting membrane potential, input resistance, and action potential waveform properties from 83 hiPSCs-SNs (2 donors) and 108 hDRG-N neurons (8 donors). We observed several statistically significant electrophysiological differences between hDRG-N and hiPSC-SNs, such as size, rheobase, input resistance, and several action potential waveform properties. Correlation analysis also revealed many properties that were positively or negatively correlated, some of which were differentially correlated between hDRG-N and hiPSC-SNs. This study shows several differences between hDRG-N and hiPSC-SNs and allows a better understanding of the advantages and disadvantages of both for use in pain research. We hope this study will be a valuable resource for pain researchers considering the use of these human in vitro systems for mechanistic studies and/or drug development projects. PERSPECTIVE: hiPSC-SNs and hDRG-N are popular tools in the field of pain research. This study allows for a better functional understanding of the pros and cons of both tools.
Collapse
Affiliation(s)
- Nesia A Zurek
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Reza Ehsanian
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Aleyah E Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ian M Adams
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Timothy Petersen
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Mark Shilling
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Karin N Westlund
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
2
|
Zurek NA, Ehsanian R, Goins AE, Adams IM, Petersen T, Goyal S, Shilling M, Westlund KN, Alles SRA. Electrophysiological analyses of human dorsal root ganglia and human induced pluripotent stem cell-derived sensory neurons from male and female donors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565343. [PMID: 37961669 PMCID: PMC10635102 DOI: 10.1101/2023.11.03.565343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) and human dorsal root ganglia (hDRG) neurons are popular tools in the field of pain research; however, few groups make use of both approaches. For screening and analgesic validation purposes, important characterizations can be determined of the similarities and differences between hDRG and hiPSC-SNs. This study focuses specifically on electrophysiology properties of hDRG in comparison to hiPSC-SNs. We also compared hDRG and hiPSC-SNs from both male and female donors to evaluate potential sex differences. We recorded neuronal size, rheobase, resting membrane potential, input resistance, and action potential waveform properties from 83 hiPSCs-SNs (2 donors) and 108 hDRG neurons (9 donors). We observed several statistically significant electrophysiological differences between hDRG and hiPSC-SNs, such as size, rheobase, input resistance, and several actional potential (AP) waveform properties. Correlation analysis also revealed many properties that were positively or negatively correlated, some of which were differentially correlated between hDRG and hiPSC-SNs. This study shows several differences between hDRG and hiPSC-SNs and allows better understanding of the advantages and disadvantages of both for use in pain research. We hope this study will be a valuable resource for pain researchers considering the use of these human in vitro systems for mechanistic studies and/or drug development projects.
Collapse
|
3
|
Zhou A, Wu B, Yu H, Tang Y, Liu J, Jia Y, Yang X, Xiang L. Current Understanding of Osteoimmunology in Certain Osteoimmune Diseases. Front Cell Dev Biol 2021; 9:698068. [PMID: 34485284 PMCID: PMC8416088 DOI: 10.3389/fcell.2021.698068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
The skeletal system and immune system seem to be two independent systems. However, there in fact are extensive and multiple crosstalk between them. The concept of osteoimmunology was created to describe those interdisciplinary events, but it has been constantly updated over time. In this review, we summarize the interactions between the skeletal and immune systems in the co-development of the two systems and the progress of certain typical bone abnormalities and bone regeneration on the cellular and molecular levels according to the mainstream novel study. At the end of the review, we also highlighted the possibility of extending the research scope of osteoimmunology to other systemic diseases. In conclusion, we propose that osteoimmunology is a promising perspective to uncover the mechanism of related diseases; meanwhile, a study from the point of view of osteoimmunology may also provide innovative ideas and resolutions to achieve the balance of internal homeostasis.
Collapse
Affiliation(s)
- Anqi Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liu Y, Wang Q, Wang Q, Cui M, Jin Y, Wang R, Mao Z, Miao D, Karaplis AC, Zhang YP, Shields LBE, Shields CB, Zhang Y. Role of PTHrP nuclear localization and carboxyl terminus sequences in postnatal spinal cord development. Dev Neurobiol 2020; 81:47-62. [PMID: 33275829 DOI: 10.1002/dneu.22798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) acts under physiological conditions to regulate normal development of several tissues and organs. The role of PTHrP in spinal cord development has not been characterized. Pthrp knock in (Pthrp KI) mice were genetically modified to produce PTHrP in which there is a deficiency of the nuclear localization sequence (NLS) and C-terminus. Using this genetically modified mouse model, we have characterized its effect on spinal cord development early postnatally. The spinal cords from Pthrp KI mice displayed a significant reduction in its length, weight, and cross-sectional area compared to wild-type controls. Histologically, there was a decreased development of neurons and glial cells that caused decreased cell proliferation and increased apoptosis. The neural stem cells (NSCs) cultures also revealed decreased cell proliferation and differentiation and increased apoptosis. The proposed mechanism of delayed spinal cord development in Pthrp KI mice may be due to alteration in associated pathways in regulation of cell-division cycles and apoptosis. There was significant downregulation of Bmi-1 and upregulation of cyclin-dependent kinase inhibitors p27, p21, and p16 in Pthrp KI animals. We conclude that NLS and C-terminus peptide segments of PTHrP play an important role in inhibiting cell apoptosis and stimulation of cellular proliferation necessary for normal spinal cord development.
Collapse
Affiliation(s)
- Yahong Liu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China
| | - Qiangcheng Wang
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Qun Wang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China
| | - Yaoyao Jin
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China
| | - Rong Wang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China.,Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Zhiyuan Mao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China.,Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Dengshun Miao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China.,Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Andrew C Karaplis
- Department of Medicine, McGill University, McGill University Health Centre, Montreal, QC, Canada
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | | | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, P.R. China.,Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Tanaka T, Takao-Kawabata R, Takakura A, Shimazu Y, Nakatsugawa M, Ito A, Lee JW, Kawasaki K, Iimura T. Teriparatide relieves ovariectomy-induced hyperalgesia in rats, suggesting the involvement of functional regulation in primary sensory neurons by PTH-mediated signaling. Sci Rep 2020; 10:5346. [PMID: 32210273 PMCID: PMC7093455 DOI: 10.1038/s41598-020-62045-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Clinical studies have reported that teriparatide (TPTD), a human parathyroid hormone analog, reduces back pain in osteoporotic patients. However, the mechanistic insights of this pharmacological action remain elusive. This study investigated the antinociceptive effect of TPTD mainly on primary sensory neurons in ovariectomized (OVX) rats. The plantar test showed thermal hyperalgesia in the OVX rats, which was significantly, but not fully, recovered immediately after the initial TPTD administration. The von Frey test also demonstrated reduced withdrawal threshold in the OVX rats. This was partially recovered by TPTD. Consistently, the number and size of spinal microglial cells were significantly increased in the OVX rats, while TPTD treatment significantly reduced the number but not size of these cells. RNA sequencing-based bioinformatics of the dorsal root ganglia (DRG) demonstrated that changes in neuro-protective and inflammatory genes were involved in the pharmacological effect of TPTD. Most neurons in the DRG expressed substantial levels of parathyroid hormone 1 receptor. TPTD treatment of the cultured DRG-derived neuronal cells reduced the cAMP level and augmented the intracellular calcium level as the concentration increased. These findings suggest that TPTD targets neuronal cells as well as bone cells to exert its pharmacological action.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan.
| | - Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan
| | - Yukari Shimazu
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Momoko Nakatsugawa
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Akitoshi Ito
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Ji-Won Lee
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan.,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon city, Ehime, 791-0295, Japan
| | - Koh Kawasaki
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan. .,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon city, Ehime, 791-0295, Japan.
| |
Collapse
|
6
|
|