1
|
Wyckmans M, Bervoets A. A review on PUVA pricks-A debilitating adverse event. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:185-192. [PMID: 35906863 DOI: 10.1111/phpp.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/09/2022] [Accepted: 07/26/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE PUVA phototherapy is indicated for various dermatological conditions. Adverse events due to PUVA phototherapy are seen in a sizable number of patients and can result in therapy cessation. This review will focus on PUVA pricks, an adverse event first reported by Tegner in 1979. METHODS Articles were retrieved from PubMed starting from January 1979 until February 2021 yielding 1228 unique articles. Articles were included when they described individual patient characteristics, and patients were treated with PUVA therapy. RESULTS After screening, 33 patients were extracted from 9 articles, published between 1979 and 2005. CONCLUSION PUVA pricks are paroxysmal episodes of burning or prickling pain, akin to peripheral neuropathy of the unmyelinated C-fibers. Increased excitability of TRPV1 and TRPA1 channels while under PUVA therapy might be a contributing factor. Effective topical treatment options for PUVA pricks are capsaicin 8% cream, urea 4%, or petrolatum emollients. Antiepileptics such as phenytoin, clonazepam, and gabapentin are acceptable oral treatment options. A possible role of N-acetylcysteine in the prevention of PUVA pricks is discussed, though further research is required.
Collapse
Affiliation(s)
- Martin Wyckmans
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Bervoets
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Dermatology, University Hospital of Antwerp, Edegem, Belgium
| |
Collapse
|
2
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
3
|
Torres KV, Pantke S, Rudolf D, Eberhardt MM, Leffler A. The coumarin osthole is a non-electrophilic agonist of TRPA1. Neurosci Lett 2022; 789:136878. [PMID: 36115537 DOI: 10.1016/j.neulet.2022.136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The naturally occurring coumarin osthole has antipruritic properties, and recent reports suggest that this effect is due an inhibition or desensitization of the cation channels TRPV1 and TRPV3. Osthole was also suggested to activate TRPA1, an effect that should rather be pruritic than antipruritic. Here we characterized the effects of osthole on TRPA1 by means of ratiometric calcium imaging and patch clamp electrophysiology. In HEK 293 expressing human (h) TRPA1, osthole induced a concentration-dependent increase in intracellular calcium that was inhibited by the TRPA1-inhibitor A967079. In mouse dorsal root ganglion (DRG) cells, osthole induced a strong calcium-influx that was partly mediated by TRPA1. Osthole evoked fully reversible membrane currents in whole-cell as well as cell-free inside-out recordings on hTRPA1. Osthole failed to activate the mutant hTRPA1-S873V/T874L, a previously described binding site for the non-electrophilic TRPA1-agonists menthol and carvacrol. The combined application of osthole and carvacrol diminished channel activation, suggesting a competitive binding. Finally, osthole failed to activate TRPM8 and TRPV4 but induced a modest activation of hTRPV1 expressed in HEK 293 cells. We conclude that osthole is a potent non-electrophilic agonist of TRPA1. The relevance of this property for the antipruritic effects needs to be further explored.
Collapse
Affiliation(s)
- Karen V Torres
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Sebastian Pantke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Rudolf
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Mirjam M Eberhardt
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
4
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Habgood M, Seiferth D, Zaki AM, Alibay I, Biggin PC. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci Rep 2022; 12:4929. [PMID: 35322090 PMCID: PMC8943162 DOI: 10.1038/s41598-022-08824-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open ‘pockets’ in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.
Collapse
Affiliation(s)
- Matthew Habgood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK.
| | - David Seiferth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Afroditi-Maria Zaki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1 (TRPA1). Neurosci Lett 2021; 764:136286. [PMID: 34624396 DOI: 10.1016/j.neulet.2021.136286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023]
Abstract
Over the last 17 years since its cloning in 2003, the receptor-channel TRPA1 has received increasing attention due to its polymodal features and prominent role in pain signaling in a variety of human disease states. While evidence has been accumulating for non-neuronal TRPA1 expression, it is the presence of this channel in nociceptive nerve endings which has taken centre stage, due to its potential clinical ramifications. As a consequence, we shall focus in this review on the sensory functions of TRPA1 related to its expression in the peripheral nervous system. While substantial research has been focused on the putative role of TRPA1 in detecting irritant compounds, noxious cold and mechanical stimuli, the current overall picture is, to some extent, still cloudy. The chemosensory function of the channel is well demonstrated, as well as its involvement in the detection of oxidative and nitrosative stress; however, the other sensory features of TRPA1 have not been fully elucidated yet. The current state of the experimental evidence for these physiological roles of TRPA1 in mammals, and particularly in humans, will be discussed in this review.
Collapse
|
7
|
Palmaers NE, Wiegand SB, Herzog C, Echtermeyer FG, Eberhardt MJ, Leffler A. Distinct Mechanisms Account for In Vitro Activation and Sensitization of TRPV1 by the Porphyrin Hemin. Int J Mol Sci 2021; 22:ijms221910856. [PMID: 34639197 PMCID: PMC8509749 DOI: 10.3390/ijms221910856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/02/2022] Open
Abstract
TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.
Collapse
|
8
|
Jia Q, Tian W, Li B, Chen W, Zhang W, Xie Y, Cheng N, Chen Q, Xiao J, Zhang Y, Yang J, Wang S. TRPV1 and TRPA1 in melanocytes synergize UV-dependent and UV-independent melanogenesis. Br J Pharmacol 2021; 178:4646-4662. [PMID: 34363226 DOI: 10.1111/bph.15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanogenesis is essential for pigmentation, and deregulated melanogenesis causes pigmentary diseases. PUVA therapy (psoralen plus ultraviolet A, UVA) strongly stimulates pigmentation, but the underlying molecular mechanisms are elusive. EXPERIMENTAL APPROACH Melanin content of cultured human melanocytes was spectrophotometrically measured. Patch-clamp recordings were made in human melanocytes or HEK 293 cells transiently expressing wild type or mutant human TRPV1 and TRPA1 channels. Endogenous expression of TRPV1 and TRPA1 in melanocytes was analyzed by western blotting and was knocked down with siRNA. In vivo pigmentary responses were measured by a colorimeter in mouse ear skin. The expression of TRPV1 and TRPA1 in human pigmented lesions was examined by immunohistochemical staining. KEY RESULTS PUVA strongly stimulated melanogenesis, and PUVA-induced TRPV1 and TRPA1 channel activation in melanocytes and the resulting Ca2+ influx were required for the stimulated melanogenesis both in vitro and in vivo. Agonists-induced TRPV1 and TRPA1 activation alone did not stimulate melanogenesis, but it synergized UVA or intrinsic cAMP and NO signaling pathways to stimulate UV-dependent or UV-independent melanogenesis. Moreover, the expressions of TRPV1 and TRPA1 were increased in human melanocytic lesions, and inhibition of both channels decreased melanin content in melanoma cells. CONCLUSION AND IMPLICATIONS TRPV1 and TRPA1 are key molecular sensors and enhancers of extrinsic and intrinsic melanogenic signals in both physiological and pathological conditions, and activation of both channels in melanocytes contributes to PUVA therapy-induced pigmentation. Our work provides a common mechanism of melanogenic regulation and highlights TRPV1 and TRPA1 as potential therapeutic targets for pigmentary disorders.
Collapse
Affiliation(s)
- Qi Jia
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Orthopedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Weifeng Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Binbin Li
- Department of Pathology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Wen Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Cheng
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- Department of Biostatistics, Navy Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Yiwang Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Shu Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|