1
|
Christensen J, Vlassopoulos E, Barlow CK, Schittenhelm RB, Li CN, Sgro M, Warren S, Semple BD, Yamakawa GR, Shultz SR, Mychasiuk R. The beneficial effects of modafinil administration on repeat mild traumatic brain injury (RmTBI) pathology in adolescent male rats are not dependent upon the orexinergic system. Exp Neurol 2024; 382:114969. [PMID: 39332798 DOI: 10.1016/j.expneurol.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elaina Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marissa Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Samantha Warren
- Monash Micro Imaging, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, B.C., Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Danesh E, Hassanpour S, Vazir B, Saghafi M, Ghalandari-Shamami M, Haghparast A. The restraint stress-induced antinociceptive effects decreased by antagonism of both orexin receptors within the CA1 region of the hippocampus. Neuropeptides 2024; 107:102463. [PMID: 39180799 DOI: 10.1016/j.npep.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Studies have indicated that stress-related symptoms can lead to hormonal and neural changes, affecting the pain threshold and nociceptive behaviors. The precise role of orexin receptors (OX1r and OX2r) in stress-induced analgesia (SIA) remains an inquiry yet to be comprehensively elucidated. The current investigation aimed to assess the impact of acute immobilization restraint stress on pain-related behavioral responses after administering antagonists targeting OX1r and OX2r in a rat model using the tail-flick test. After a period of five to seven days post-stereotaxic surgery in CA1, the baseline tail-flick latency (TFL) was recorded for each animal. Subsequently, rats were unilaterally administered varying doses of the OX1r antagonist (SB334867; 1, 3, 10, and 30 nmol), the OX2r antagonist (TCS OX2 29; 1, 3, 10, and 30 nmol), or a vehicle (0.5 μl solution containing 12% DMSO) through an implanted cannula. Following a 5-min interval, the animals were subjected to a restraint stress (RS) lasting for 3 h. The tail-flick test was conducted after the stress exposure, and the TFLs were assessed at 60-min intervals. The findings of this study revealed that RS elicits antinociceptive responses in the tail-flick test. Microinjection of OX1r and OX2r antagonists into the CA1 attenuated RS-induced analgesia during the tail-flick test. Furthermore, the results underscored the preeminent role of OX2 receptors in modulating SIA. In conclusion, the orexin system localized within the hippocampal CA1 region may, in part, contribute to the manifestation of SIA in the context of acute pain.
Collapse
Affiliation(s)
- Elaheh Danesh
- Department of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Vazir
- Division of Physiology, Department of basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Saghafi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Farmani D, Moteshakereh SM, Nikoohemmat M, Askari R, Salehi S, Haghparast A. Restraint stress-induced antinociceptive effects in acute pain: Involvement of orexinergic system in the nucleus accumbens. Behav Brain Res 2024; 472:115133. [PMID: 38960330 DOI: 10.1016/j.bbr.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The complicated relevance between stress and pain has been identified. Neurotransmitters and neuropeptides of various brain areas play a role in this communication. Pain inhibitory response is known as stress-induced analgesia (SIA). The studies demonstrated that the nucleus accumbens (NAc) is critical in modulating pain. As a neuropeptide, orexin is crucially involved in initiating behavioral and physiological responses to threatening and unfeeling stimuli. However, the role of the orexin receptors of the NAc area after exposure to restraint stress (RS) as acute physical stress in the modulation of acute pain is unclear. One hundered twenty adult male albino Wistar rats (230-250 g) were used. Animals were unilaterally implanted with cannulae above the NAc. The SB334867 and TCS OX2 29 were used as antagonists for OX1r and OX2r, respectively. Different doses of the antagonists (1, 3, 10, and 30 nmol/0.5 µl DMSO) were microinjected intra-NAc five minutes before exposure to RS (3 hours). Then, the tail-flick test as a model of acute pain was performed, and the nociceptive threshold (Tail-flick latency; TFL) was measured in 60-minute time set intervals. According to this study's findings, the antinociceptive effects of RS in the tail-flick test were blocked during intra-NAc administration of SB334867 or TCS OX2 29. The RS as acute stress increased TFL and deceased pain-like behavior responses. The 50 % effective dose values of the OX1r and OX2r antagonists were 12.82 and 21.64 nmol, respectively. The result demonstrated contribution of the OX1r into the NAc was more remarkable than that of the OX2r on antinociceptive responses induced by the RS. Besides, in the absence of RS, the TFL was attenuated. The current study's data indicated that OX1r and OX2r into the NAc induced pain modulation responses during RS in acute pain. In conclusion, the findings revealed the involvement of intra-NAc orexin receptors in improving SIA.
Collapse
Affiliation(s)
- Danial Farmani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nikoohemmat
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Askari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Golmohammadi H, Shirmohammadi D, Mazaheri S, Haghparast A. D2-like dopamine receptors blockade within the dentate gyrus shows a greater effect on stress-induced analgesia in the tail-flick test compared to D1-like dopamine receptors. Behav Pharmacol 2024; 35:253-262. [PMID: 38869040 DOI: 10.1097/fbp.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Acute stress, as a protective mechanism to respond to an aversive stimulus, can often be accompanied by suppressing pain perception via promoting consistent burst firing of dopamine neurons. Besides, sensitive and advanced research techniques led to the recognition of the mesohippocampal dopaminergic terminals, particularly in the hippocampal dentate gyrus (DG). Moreover, previous studies have shown that dopamine receptors within the hippocampal DG play a critical role in induced antinociceptive responses by forced swim stress (FSS) in the presence of inflammatory pain. Since different pain states can trigger various mechanisms and transmitter systems, the present experiments aimed to investigate whether dopaminergic receptors within the DG have the same role in the presence of acute thermal pain. METHODS Ninety-seven adult male albino Wistar rats underwent stereotaxic surgery, and a stainless steel guide cannula was unilaterally implanted 1 mm above the DG. Different doses of SCH23390 or sulpiride as D1- and D2-like dopamine receptor antagonists were microinjected into the DG 5-10 min before exposure to FSS, and 5 min after FSS exposure, the tail-flick test evaluated the effect of stress on the nociceptive response at the time-set intervals. RESULTS The results demonstrated that exposure to FSS could significantly increase the acute pain perception threshold, while intra-DG administration of SCH23390 and sulpiride reduced the antinociceptive effect of FSS in the tail-flick test. DISCUSSION Additionally, it seems the D2-like dopamine receptor within the DG plays a more prominent role in FSS-induced analgesia in the acute pain model.
Collapse
Affiliation(s)
- Homayoon Golmohammadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Science
| | | | - Sajad Mazaheri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Science
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Science
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Nikoohemmat M, Farmani D, Moteshakereh SM, Salehi S, Rezaee L, Haghparast A. Intra-accumbal orexinergic system contributes to the stress-induced antinociceptive behaviors in the animal model of acute pain in rats. Behav Pharmacol 2024; 35:92-102. [PMID: 38055726 DOI: 10.1097/fbp.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Stress and pain are interleaved at numerous levels - influencing each other. Stress can increase the nociception threshold in animals, long-known as stress-induced analgesia (SIA). Orexin is known as a neuropeptide that modulates pain. The effect of stress on the mesolimbic system in the modulation of pain is known. The role of the intra-accumbal orexin receptors in the modulation of acute pain by forced swim stress (FSS) is unclear. In this study, 117 adult male albino Wistar rats (270-300 g) were used. The animals were unilaterally implanted with cannulae above the NAc. The antagonist of the orexin-1 receptor (OX1r), SB334867, and antagonist of the orexin-2 receptor (OX2r), TCS OX2 29, were microinjected into the NAc in different doses (1, 3, 10, and 30 nmol/0.5 µl DMSO) before exposure to FSS for a 6-min period. The tail-flick test was carried out as an assay nociception of acute pain, and the nociceptive threshold [tail-flick latency (TFL)] was measured for 60-minute. The findings demonstrated that exposure to acute stress could remarkably increase the TFLs and antinociceptive responses. Moreover, intra-accumbal microinjection of SB334867 or TCS OX2 29 blocked the antinociceptive effect of stress in the tail-flick test. The contribution of orexin receptors was almost equally modulating SIA. The present study's findings suggest that OX1r and OX2r within the NAc modulate stress-induced antinociceptive responses. The intra-accumbal microinjection of orexin receptors antagonists declares inducing antinociceptive responses by FSS in acute pain. Proposedly, intra-accumbla orexinergic receptors have a role in the development of SIA.
Collapse
Affiliation(s)
- Mohammad Nikoohemmat
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | - Danial Farmani
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | | | - Sakineh Salehi
- Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran
| | - Laleh Rezaee
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
6
|
Baghani M, Bolouri-Roudsari A, Askari R, Haghparast A. Orexin receptors in the hippocampal dentate gyrus modulated the restraint stress-induced analgesia in the animal model of chronic pain. Behav Brain Res 2024; 459:114772. [PMID: 37995966 DOI: 10.1016/j.bbr.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Previous studies have shown that stressful stimuli induced an adaptive response of reduced nociception, known as stress-induced analgesia (SIA). Since orexin neuropeptides are involved in pain modulation, and orexin neurons, primarily located in the lateral hypothalamus (LH), project to various hippocampal regions, such as the dentate gyrus (DG), the current study aimed to examine the role of orexin receptors within the DG region in the restraint SIA in the animal model of chronic pain. One hundred-thirty adult male Wistar rats (230-250 g) were unilaterally implanted with a cannula above the DG region. Animals were given SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol, 0.5 µl/rat) into the DG region as orexin-1 receptor (OX1r) and orexin-2 receptor (OX2r) antagonists, respectively, five min before exposure to a 3-hour restraint stress (RS) period. Animals were then undergone the formalin test to assess pain-related behaviors as the animal model of chronic pain. The results showed that RS produces an analgesic response during the early and late phases of the formalin test. However, intra-DG microinjection of OX1r and OX2r antagonists attenuated the restraint SIA. OX2r antagonist was more potent than OX1r antagonist in the early phase of the formalin test, while OX1r antagonist was little more effective in the late phase. Predominantly, it could be concluded that the orexinergic system in the DG region might act as a potential endogenous pain control system and a novel target for treating stress-related disorders.
Collapse
Affiliation(s)
- Matin Baghani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arad Bolouri-Roudsari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Askari
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Bolouri-Roudsari A, Baghani M, Askari K, Mazaheri S, Haghparast A. The integrative role of orexin-1 and orexin-2 receptors within the hippocampal dentate gyrus in the modulation of the stress-induced antinociception in the formalin pain test in the rat. Behav Pharmacol 2024; 35:14-25. [PMID: 37578388 DOI: 10.1097/fbp.0000000000000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The stressful experiences, by triggering a cascade of hormonal and neural changes, can produce antinociception commonly referred to as stress-induced antinociception (SIA). Orexin neuropeptides have an essential role in stress responses and pain modulation. The dentate gyrus receives orexinergic projections and has been shown to be involved in pain processing. The current study investigated the possible role of orexin-1 and orexin-2 receptors (OX1r and OX2r, respectively) within the dentate gyrus in SIA in a rat model of formalin-induced pain behavior in one hind paw. Male Wistar rats weighing 230-250 g underwent stereotaxic surgery and a cannula was implanted in their brains, above the dentate gyrus region. Either SB334867 or TCS OX2 29 (OX1r and OX2r antagonists, respectively) was microinjected into the dentate gyrus region at a range of doses at 1, 3, 10, and 30 nmol (control group received DMSO 12% as vehicle), 5 min before the forced swim stress (FSS) exposure. The formalin test was performed to assess pain-related behaviors. The results indicated that FSS exposure relieves pain-related behavior in the early and late phases of the formalin test. Blockade of intra-dentate gyrus OX1 or OX2 receptors reduced the antinociceptive responses induced by FSS in the formalin test, with more impact during the late phase. Our findings support the potential role of intra-dentate gyrus orexin receptors as target sites of orexin neurons in painful and stressful situations. Therefore, understanding the exact mechanisms of SIA and the role of the orexinergic system in this phenomenon can lead to identifying the strategies to guide future research and offer a new approach to discovering new pain therapeutic agents.
Collapse
Affiliation(s)
- Arad Bolouri-Roudsari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Matin Baghani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | | | - Sajad Mazaheri
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
8
|
Spinieli RL, Cazuza R, Sales AJ, Carolino R, Franci JA, Tajerian M, Leite-Panissi CRA. Acute restraint stress regulates brain DNMT3a and promotes defensive behaviors in male rats. Neurosci Lett 2024; 820:137589. [PMID: 38101612 PMCID: PMC10947420 DOI: 10.1016/j.neulet.2023.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Depending on its duration and severity, stress may contribute to neuropsychiatric diseases such as depression and anxiety. Studies have shown that stress impacts the hypothalamic-pituitary-adrenal (HPA) axis, but its downstream molecular, behavioral, and nociceptive effects remain unclear. We hypothesized that a 2-hour single exposure to acute restraint stress (ARS) activates the HPA axis and changes DNA methylation, a molecular mechanism involved in the machinery of stress regulation. We further hypothesized that ARS induces anxiety-like and risk assessment behavior and alters nociceptive responses in the rat. We employed biochemical (radioimmunoassay for corticosterone; global DNA methylation by enzyme immunoassay and western blot for DNMT3a expression in the amygdala, ventral hippocampus, and prefrontal cortex) and behavioral (elevated plus maze and dark-light box for anxiety and hot plate test for nociception) tests in adult male Wistar rats exposed to ARS or handling (control). All analyses were performed 24 h after ARS or handling. We found that ARS increased corticosterone levels in the blood, increased the expression of DNMT3a in the prefrontal cortex, promoted anxiety-like and risk assessment behaviors in the elevated plus maze, and increased the nociceptive threshold observed in the hot plate test. Our findings suggest that ARS might be a helpful rat model for studying acute stress and its effects on physiology, epigenetic machinery, and behavior.
Collapse
Affiliation(s)
- Richard L Spinieli
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil.
| | - Rafael Cazuza
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil
| | - Amanda J Sales
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ruither Carolino
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Janete A Franci
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, NY, United States; The Graduate Center, City University of New York, New York, NY, United States
| | - Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil.
| |
Collapse
|
9
|
Saghafi M, Danesh E, Askari R, Mousavi Z, Haghparast A. Differential Roles of the D1- and D2-Like Dopamine Receptors Within the Ventral Tegmental Area in Modulating the Antinociception Induced by Forced Swim Stress in the Rat. Neurochem Res 2024; 49:143-156. [PMID: 37642894 DOI: 10.1007/s11064-023-04017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Several preclinical and clinical studies indicate that exposure to acute stress may decrease pain perception and increases pain tolerance. This phenomenon is called stress-induced analgesia (SIA). A variety of neurotransmitters, including dopamine, is involved in the SIA. Dopaminergic neurons in the mesolimbic circuits, originating from the ventral tegmental area (VTA), play a crucial role in various motivational, rewarding, and pain events. The present study aimed to investigate the modulatory role of VTA dopaminergic receptors in the antinociceptive responses evoked by forced swim stress (FSS) in a model of acute pain. One hundred-five adult male albino Wistar rats were subjected to stereotaxic surgery for implanting a unilateral cannula into the VTA. After one week of recovery, separate groups of animals were given different doses of SCH23390 and Sulpiride (0.25, 1, and 4 µg/0.3 µl) as D1- and D2-like receptor antagonists into the VTA, respectively. Then, the animals were exposed to FSS for a 6-min period, and the pain threshold was measured using the tail-flick test over a 60-min time set intervals. Results indicated that exposure to FSS produces a prominent antinociceptive response, diminishing by blocking both dopamine receptors in the VTA. Nonetheless, the effect of a D1-like dopamine receptor antagonist on FSS-induced analgesia was more prominent than that of a D2-like dopamine receptor antagonist. The results demonstrated that VTA dopaminergic receptors contribute to the pain process in stressful situations, and it might be provided a practical approach to designing new therapeutic agents for pain management.
Collapse
Affiliation(s)
- Mohammad Saghafi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Danesh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Reyhaneh Askari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Panahi PS, Esmaili S, Ghalandari-Shamami M, Mousavi Z, Haghparast A. Similar functional roles of the Orexin-1 and Orexin-2 receptors within the dentate gyrus area of the hippocampus in the stress-induced antinociceptive responses in the acute pain model in the rat. Physiol Behav 2023; 270:114311. [PMID: 37536620 DOI: 10.1016/j.physbeh.2023.114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Studies establish that the brain's Orexin system is involved in pain modulation. Orexin-1 and orexin-2 receptors (OX1 and OX2r, respectively) are essential in responsiveness to stressful stimuli. Some evidence indicates that the hippocampus's dentate gyrus (DG) potentially modulates pain and stress. The present study examined the involvement of OX1 and OX2 receptors within the DG in response to acute pain after exposure to forced swim stress (FSS). Five to seven days post-stereotaxic surgery, the baseline tail-flick latency (TFL) was taken from the animal, then rats unilaterally received through an implanted cannula either different doses of OX1r antagonist (SB334867; 1, 3, 10, and 30 nmol), OX2r antagonist (TCS OX2 29; 1, 3, 10 and 30 nmol), or vehicle (0.5 μl solution of 12% DMSO). After 5 min, rats were exposed to the FSS for six minutes. Subsequently, the tail-flick test was conducted, and the TFLs were measured at the 60-min time set intervals. Results indicated that FSS produces antinociceptive responses in the tail-flick test. Two-way ANOVA analysis showed that Microinjection of OX1r and OX2r antagonists into the DG region of the brain reduced FSS-induced analgesia in the tail-flick test. The decrement effects of these two antagonists were almost the same. Additionally, results showed that the role of both receptors was the same in modulating stress-induced analgesia (SIA). These findings show that the orexin system in the hippocampal DG region might be partially involved in the SIA in acute pain.
Collapse
Affiliation(s)
- Parisa Sadat Panahi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sogol Esmaili
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Mazaheri S, Zendehdel M, Haghparast A. Restraint stress potentiates sensitivity to the antinociceptive effect of morphine through orexin receptors in the ventral tegmental area. Neuropeptides 2023; 101:102353. [PMID: 37385145 DOI: 10.1016/j.npep.2023.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Orexin signaling in the ventral tegmental area (VTA) plays a critical role in stress and addictive behaviors. On the other hand, exposure to stress potentiates behavioral sensitization to drugs of abuse such as morphine. This study aimed to elucidate the role of orexin receptors within the VTA in restraint stress (RS)-induced morphine sensitization. Adult male albino Wistar rats underwent stereotaxic surgery, and two stainless steel guide cannulae were bilaterally implanted into the VTA. Different doses of SB334867 or TCS OX2 29 as orexin-1 (OX1) and orexin-2 (OX2) receptor antagonists were microinjected into the VTA five min before exposure to RS, respectively. A duration of three hours was considered for applying the RS, and 10 min after RS exposure, animals received a subcutaneous injection of an ineffective dose of morphine (1 mg/kg) for three consecutive days followed by a five-day drug/stress-free period. On the ninth day, the tail-flick test evaluated the sensitivity to the antinociceptive effects of morphine. The results demonstrated that the sole application of RS or morphine (1 mg/kg) could not induce morphine sensitization; however, concurrent application of RS and morphine could induce morphine sensitization. Besides, intra-VTA administration of OX1 R or OX2 R antagonists before paired administration of morphine and RS blocked morphine sensitization. The role of OX1 R and OX2 R in the induction of stress-induced morphine sensitization was almost identical. This study provides new insight into the role of orexin signaling in the VTA in the potentiation of morphine sensitization induced by RS and morphine co-administration.
Collapse
Affiliation(s)
- Sajad Mazaheri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Moteshakereh SM, Nikoohemmat M, Farmani D, Khosrowabadi E, Salehi S, Haghparast A. The stress-induced antinociceptive responses to the persistent inflammatory pain involve the orexin receptors in the nucleus accumbens. Neuropeptides 2023; 98:102323. [PMID: 36736068 DOI: 10.1016/j.npep.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Stress suppresses the sense of pain, a physiological phenomenon known as stress-induced analgesia (SIA). Brain orexin peptides regulate many physiological functions, including wakefulness and nociception. The contribution of the orexinergic system within the nucleus accumbens (NAc) in the modulation of antinociception induced by forced swim stress (FSS) remains unclear. The present study addressed the role of intra-accumbal orexin receptors in the antinociceptive responses induced by FSS during the persistent inflammatory pain model in the rat. Stereotaxic surgery was performed unilaterally on 106 adult male Wistar rats weighing 250-305 g. Different doses (1, 3, 10, and 30 nmol/ 0.5 μl DMSO) of orexin-1 receptor (OX1r) antagonist (SB334867) or OX2 receptor antagonist (TCS OX2 29) were administered into the NAc five minutes before exposure to FSS for a 6-min period. The formalin test was carried out using formalin injection (50 μl; 2.5%) into the rat's hind paw plantar surface, which induces biphasic pain-related responses. The first phase begins immediately after formalin infusion and takes 3-5 min. Subsequently, the late phase begins 15-20 min after formalin injection and takes 20-40 min. The findings demonstrated that intra-accumbal microinjection of SB334867 or TCS OX2 29 attenuated the FSS-induced antinociception in both phases of the formalin test, with the TCS OX2 29 showing higher potency. Moreover, the effect of TCS OX2 29 was more significant during the early phase of the formalin test. The results suggest that OX1 and OX2 receptors in the NAc might modulate the antinociceptive responses induced by the FSS.
Collapse
Affiliation(s)
| | - Mohammad Nikoohemmat
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Farmani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- epartment of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Blockade of the orexin receptors in the ventral tegmental area could attenuate the stress-induced analgesia: A behavioral and molecular study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110639. [PMID: 36116673 DOI: 10.1016/j.pnpbp.2022.110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Exposure to stressful stimuli induces various physiological and behavioral responses, affects pain perception, and alters gene expression. Stress elicits an analgesic effect in laboratory animals, termed the "stress-induced analgesia" (SIA). Orexin neuropeptides, processed from pre-pro-orexin in the hypothalamus, release during stress and are known to be antinociceptive. The current study examined the modulatory role of the ventral tegmental area (VTA) orexinergic system in the restraint SIA and extracellular signal-regulated kinase (ERK) activation in the nucleus accumbens (NAc). Adult male Wistar rats were subjected to intra-VTA injection of orexin-1 and -2 receptor antagonists (SB334867 and TCS OX2 29; 1, 3, 10, and 30 nmol/0.3 μl, respectively) five min before a 3-h period of exposure to restraint stress (RS). Western blot analysis was also used to assess the levels of ERK and phosphorylated ERK (p-ERK) in the NAc tissues. RS exposure produced an analgesic response to the thermal pain model (Tail-flick test). RS-induced antinociception was inhibited by intra-VTA administration of SB334867 and TCS OX2 29. Moreover, in the molecular study, exposure to forced swim stress (FSS) and RS significantly enhanced the p-ERK/ERK ratio. Blockade of both orexin receptors diminished the p-ERK/ERK ratio, but this decrease was significant only in the FSS group of animals that received TCS OX2 29. Collectively, the present findings suggested the functional roles of intra-VTA orexin receptors and ERK signaling in the SIA.
Collapse
|
14
|
Shakerinava P, Sayarnezhad A, Karimi-Haghighi S, Mesgar S, Haghparast A. Antagonism of the orexin receptors in the ventral tegmental area diminished the stress-induced analgesia in persistent inflammatory pain. Neuropeptides 2022; 96:102291. [PMID: 36155089 DOI: 10.1016/j.npep.2022.102291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
As a part of descending pain inhibitory system, orexin (OXs) in the ventral tegmental area (VTA) are implicated in nociceptive responses. The current study aimed to evaluate the role of OX receptors (OXRs) in the VTA in stress-induced analgesia in persistent inflammatory pain. Ninety-nine adult male Wistar rats underwent forced swim stress (FSS) following intra-VTA infusion of various doses of SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol/0.3 μL) as an OX1R or OX2R antagonist, respectively. The nociceptive threshold was evaluated using the formalin test as an animal model of persistent inflammatory pain. Current results demonstrated FSS as acute stress produced analgesic responses in the persistent inflammatory pain. Moreover, either OX1R or OX2R antagonist infusion in the VTA hindered the FSS-induced analgesia in both early and late phases. The inhibitory effect of SB334768 in the FSS-induced analgesia was stronger than TCS OX2 29 in both early and late phases of the formalin test. Neither SB334768 nor TCS OX2 29 alone affects pain-related behaviors in formalin tests. Intra-VTA microinjection of each treatment could not modify locomotion in rats. The findings suggest that OX1R and OX2R in the VTA are implicated in FSS-induced analgesia mechanisms.
Collapse
Affiliation(s)
- Pedram Shakerinava
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sayarnezhad
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Mesgar
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
The modulatory role of dopamine receptors within the hippocampal cornu ammonis area 1 in stress-induced analgesia in an animal model of persistent inflammatory pain. Behav Pharmacol 2022; 33:492-504. [PMID: 36148837 DOI: 10.1097/fbp.0000000000000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intrinsic pain inhibitory mechanisms can be activated by fear, anxiety, and stress. Stressful experiences produce analgesia, referred to as stress-induced analgesia (SIA). Major components of the limbic system, including the ventral tegmental area, nucleus accumbens, amygdala, and hippocampus, are involved in the SIA. In this study, we tried to understand the role of dopamine receptors in the cornu ammonis area 1 (CA1) of the hippocampus in the forced swim stress (FSS)-induced analgesia. Stereotaxic surgery was unilaterally performed on 129 adult male Wistar rats weighing 220-280 g. SCH23390 (0.25, 1, and 4 μg/0.5 μl saline) or sulpiride (0.25, 1, and 4 μg/0.5 μl DMSO), as D1- and D2-like dopamine receptor antagonists, respectively, were microinjected into the CA1 area, 5 min before exposure to FSS for a 6-min period. The vehicle groups received saline or DMSO instead of SCH23390 or sulpiride, respectively. The formalin test was done using formalin injection (50 μl; 2.5%) into the plantar surface of the rat's hind paw immediately after exposure to FSS. The results demonstrated that FSS produces analgesia during the early and late phases of the formalin test. However, intra-CA1 microinjection of SCH23390 or sulpiride attenuated the FSS-induced analgesia in both phases of the formalin test. This study provides new insight into the role of D1- and D2-like dopamine receptors in the CA1 area in the FSS-induced analgesia during persistent inflammatory pain.
Collapse
|
16
|
Merdasi PG, Dezfouli RA, Mazaheri S, Haghparast A. Blocking the dopaminergic receptors in the hippocampal dentate gyrus reduced the stress-induced analgesia in persistent inflammatory pain in the rat. Physiol Behav 2022; 253:113848. [PMID: 35597308 DOI: 10.1016/j.physbeh.2022.113848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Although the dentate gyrus (DG) as a component of the hippocampal formation has been well known for its role in memory, various studies showed a diverse population of unique cell types and various inputs and outputs in this region. Besides, brain dopamine is known for its roles in reward, motivation, pleasure, and being involved in the pain process. Further, previous studies demonstrated the participation of DG dopaminergic receptors in antinociception induced by lateral hypothalamus stimulation. This study aimed to investigate the role of DG dopaminergic receptors (D1- and D2-like dopamine receptors) in stress-induced analgesia (SIA) using the formalin test as a persistent inflammatory pain model. One hundred two male Wistar rats were unilaterally implanted with a cannula into the DG. Animals received an intra-DG infusion of SCH23390 (0.25, 1, and 4 μg/rat), or Sulpiride (0.25, 1, and 4 μg/rat) as D1- and D2-like dopamine receptor antagonists, respectively, five min before exposure to forced swim stress (FSS). Ten minutes after FSS termination, 2.5% formalin solution as an inflammatory agent was subcutaneously injected into the plantar surface of the hind paw, and the pain score was quantified for one hour. The findings revealed that exposure to FSS produced SIA, though this FSS-induced analgesia was attenuated in the early and late phase of the formalin test by intra-DG microinjection of SCH23390 or Sulpiride. These results suggested that both D1- and D2-like dopamine receptors in the DG have a considerable role in analgesia induced by FSS.
Collapse
Affiliation(s)
- Pooriya Ghanbari Merdasi
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Abdi Dezfouli
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Mazaheri
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
17
|
Mazaheri S, Zendehdel M, Haghparast A. Role of orexinergic receptors within the ventral tegmental area in the development of morphine sensitization induced by forced swim stress in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110539. [PMID: 35217126 DOI: 10.1016/j.pnpbp.2022.110539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
The ventral tegmental area (VTA) has been suggested as part of a common system for reward, stress, and morphine sensitization. Repeated exposure to stress enhances sensitivity to drugs such as morphine. The role of orexin receptor type 1 (OX1R) and type 2 (OX2R) within the VTA in cross-sensitization of morphine with stress was assessed in this study. Various doses of OX1R antagonist (SB334867) and OX2R antagonist (TCS OX2 29) were microinjected into the VTA of 134 adult male albino Wistar rats through cannulae, which had been bilaterally implanted above this region. Five min after microinjection, animals were forced to swim for 6 min, and 10 min after forced swim stress (FSS) termination, a low dose of morphine (i.e., ineffective dose for sensitization) was subcutaneously injected (1 mg/kg; sc). This procedure was repeated for three consecutive days as a sensitization period followed by a 5-day drug/stress-free period. On the 9th day, sensitivity to morphine was examined by measuring antinociceptive responses to the ineffective dose of morphine via tail-flick test. The obtained findings revealed that while concurrent administration of FSS and an ineffective dose of morphine (1 mg/kg; sc) for three consecutive days induced sensitivity to morphine, intra-VTA administration of OX1R- and OX2R antagonists, dose-dependently blocked this sensitization. These results suggested that both orexin receptors located in the VTA have a considerable role in morphine sensitization induced by concurrent administration of FSS and a low dose of morphine. So, there is a contribution of the orexin system partly to stress-induced sensitization to morphine.
Collapse
Affiliation(s)
- Sajad Mazaheri
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Nucleus accumbens dopamine receptors mediate the stress-induced analgesia in an animal model of acute pain. Brain Res 2022; 1784:147887. [DOI: 10.1016/j.brainres.2022.147887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
|
19
|
Ghalebandi S, Zareie F, Askari K, Yuzugulen J, Haghparast A. Intra-CA1 injection of orexin receptors antagonism attenuates the stress-induced analgesia in a rat acute pain model. Behav Brain Res 2022; 423:113785. [PMID: 35122794 DOI: 10.1016/j.bbr.2022.113785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Orexins or hypocretins are excitatory neuropeptides predominantly produced by neuronal clusters in the lateral hypothalamus. The orexinergic system's involvement in pain modulation makes it a candidate for pain control alternative to the opioid system. Moreover, orexin-1 and orexin -2 receptors (OX1r and OX2r, respectively) play a role in responsiveness to stressful stimuli. Some evidence indicates that the Cornu Ammonis 1 (CA1) region of the hippocampus potentially participates in the modulation of both pain and stress. In quest of better understanding the interaction between orexin receptors and stress-induced analgesia (SIA), The present study examined the involvement of OX1r and OX2r within the CA1 in response to acute pain after exposure to forced swim stress (FSS) for a 6-min period. Adult male Wistar rats received different doses of OX1r antagonist (SB334867; 1, 3, 10, and 30 nmol), OX2r antagonist (TCS OX2 29; 3, 10, 30 and 100 nmol), or vehicle (0.5 μl DMSO) through an implanted cannula. After that, animals individually experienced acute pain by performing the tail-flick test. Results indicated that FSS produces antinociceptive responses in the tail-flick test. Blockade of both orexin receptors within the CA1 region attenuated the analgesic effect of FSS. The antinociceptive effect of swim stress was prevented by lower doses of SB334867 than TCS OX2 29. These findings show that the orexinergic system might be partially involved in the SIA via the OX1 and OX2 receptors in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Seyedehdelaram Ghalebandi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey
| | - Fatemeh Zareie
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Askari
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|