1
|
Bryson M, Kloefkorn H, Idlett-Ali S, Carrasco DI, Noble DJ, Martin K, Sawchuk MA, Au Yong N, Garraway SM, Hochman S. Emergent epileptiform activity in spinal sensory circuits drives ectopic bursting in afferent axons and sensory dysfunction after cord injury. Pain 2024:00006396-990000000-00676. [PMID: 39106457 DOI: 10.1097/j.pain.0000000000003364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/25/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Spinal cord injury leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform, we explored whether such activity emerges in a thoracic spinal cord injury (SCI) contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which were correlated across multiple adjacent dorsal roots. Burst frequency correlated with behavioral mechanosensitivity. The same bursting events were recruited by afferent stimulation, and timing interactions with ongoing spontaneous bursts revealed that recruitment was limited by a prolonged post-burst refractory period. Ectopic bursting in afferent axons was driven by GABAA receptor activation, presumably by conversion of subthreshold GABAergic interneuronal presynaptic axoaxonic inhibitory actions to suprathreshold spiking. Collectively, the emergence of stereotyped bursting circuitry with hypersynchrony, sensory input activation, post-burst refractory period, and reorganization of connectivity represent defining features of an epileptiform network. Indeed, these same features were reproduced in naive animals with the convulsant 4-aminopyridine (fampridine). We conclude that spinal cord injury promotes the emergence of epileptiform activity in spinal sensory networks that promote profound corruption of sensory signaling. This includes hyperexcitability and bursting by ectopic spiking in afferent axons that propagate bidirectionally by reentrant central and peripheral projections as well as sensory circuit hypoexcitability during the burst refractory period. More broadly, the work links circuit hyperexcitability to epileptiform circuit emergence, further strengthening it as a conceptual basis to understand features of sensory dysfunction and neuropathic pain.
Collapse
Affiliation(s)
- Matthew Bryson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Heidi Kloefkorn
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | | | - Dario I Carrasco
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Donald James Noble
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karmarcha Martin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael A Sawchuk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicholas Au Yong
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Sandra M Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Shawn Hochman
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Lucas-Romero J, Rivera-Arconada I, Lopez-Garcia JA. Noise or signal? Spontaneous activity of dorsal horn neurons: patterns and function in health and disease. Pflugers Arch 2024; 476:1171-1186. [PMID: 38822875 PMCID: PMC11271371 DOI: 10.1007/s00424-024-02971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or "noise" in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques. In this review, we specifically focus on the spontaneous activity of dorsal horn neurons of the spinal cord. We use a historical perspective to set the basis for a novel classification of the different patterns of spontaneous activity exhibited by dorsal horn neurons. Then we examine the origins of this activity and propose a model circuit to explain how the activity is generated and transmitted to the dorsal horn. Finally, we discuss possible roles of this activity during development and during signal processing under physiological conditions and pain states. By analyzing recent studies on the spontaneous activity of dorsal horn neurons, we aim to shed light on its significance in sensory processing. Understanding the different patterns of activity, the origins of this activity, and the potential roles it may play, will contribute to our knowledge of sensory mechanisms, including pain, to facilitate the modeling of spinal circuits and hopefully to explore novel strategies for pain treatment.
Collapse
Affiliation(s)
- Javier Lucas-Romero
- Department of Systems Biology, University of Alcala, 28805, Madrid, Spain
- Department of Physical Therapy, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | | | - Jose Antonio Lopez-Garcia
- Department of Systems Biology, University of Alcala, 28805, Madrid, Spain.
- Departamento de Biologia de Sistemas, Edificio de Medicina, Universidad de Alcala, Ctra. Madrid-Barcelona, Km 33,600, 28805, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
3
|
Bryson M, Kloefkorn H, Idlett-Ali S, Martin K, Garraway SM, Hochman S. Emergent epileptiform activity drives spinal sensory circuits to generate ectopic bursting in intraspinal afferent axons after cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547522. [PMID: 37461440 PMCID: PMC10349934 DOI: 10.1101/2023.07.03.547522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Spinal cord injury ( SCI ) leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform elsewhere, we explored whether such activity emerges in spinal sensory circuits in a thoracic SCI contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots ( DRs ) demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which synchronized across multiple adjacent DRs. Burst frequency correlated with behavioral mechanosensitivity. The same bursting events were recruited by afferent stimulation, and timing interactions with ongoing spontaneous bursts revealed that recruitment was limited by a prolonged post-burst refractory period. Ectopic bursting in afferent axons was driven by GABA A receptor activation, presumably via shifting subthreshold GABAergic interneuronal presynaptic axoaxonic inhibitory actions to suprathreshold spiking. Collectively, the emergence of stereotyped bursting circuitry with hypersynchrony, sensory input activation, post-burst refractory period, and reorganization of connectivity represent defining features of epileptiform networks. Indeed, these same features were reproduced in naïve animals with the convulsant 4-aminopyridine ( 4-AP ). We conclude that SCI promotes the emergence of epileptiform activity in spinal sensory networks that promotes profound corruption of sensory signaling. This corruption includes downstream actions driven by ectopic afferent bursts that propagate via reentrant central and peripheral projections and GABAergic presynaptic circuit hypoexcitability during the refractory period.
Collapse
|
4
|
Lucas-Romero J, Rivera-Arconada I, Lopez-Garcia JA. Synchronous firing of dorsal horn neurons at the origin of dorsal root reflexes in naïve and paw-inflamed mice. Front Cell Neurosci 2022; 16:1004956. [PMID: 36212688 PMCID: PMC9539274 DOI: 10.3389/fncel.2022.1004956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Spinal interneurons located in the dorsal horn induce primary afferent depolarization (PAD) controlling the excitability of the afferent’s terminals. Following inflammation, PAD may reach firing threshold contributing to maintain inflammation and pain. Our aim was to study the collective behavior of dorsal horn neurons, its relation to backfiring of primary afferents and the effects of a peripheral inflammation in this system. Experiments were performed on slices of spinal cord obtained from naïve adult mice or mice that had suffered an inflammatory pretreatment. Simultaneous recordings from groups of dorsal horn neurons and primary afferents were obtained and machine-learning methodology was used to analyze effective connectivity between them. Dorsal horn recordings showed grouping of spontaneous action potentials from different neurons in “population bursts.” These occurred at irregular intervals and were formed by action potentials from all classes of neurons recorded. Compared to naïve, population bursts from treated animals concentrated more action potentials, had a faster onset and a slower decay. Population bursts were disrupted by perfusion of picrotoxin and held a strong temporal correlation with backfiring of afferents. Effective connectivity analysis allowed pinpointing specific neurons holding pre- or post-synaptic relation to the afferents. Many of these neurons had an irregular fast bursting pattern of spontaneous firing. We conclude that population bursts contain action potentials from neurons presynaptic to the afferents which are likely to control their excitability. Peripheral inflammation may enhance synchrony in these neurons, increasing the chance of triggering action potentials in primary afferents and contributing toward central sensitization.
Collapse
|
5
|
Singh SP, William M, Malavia M, Chu XP. Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders. MEMBRANES 2022; 12:membranes12050499. [PMID: 35629827 PMCID: PMC9143857 DOI: 10.3390/membranes12050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Collapse
|