1
|
Salberg S, Macowan M, Doshen A, Yamakawa GR, Sgro M, Marsland B, Henderson LA, Mychasiuk R. A high fat, high sugar diet exacerbates persistent post-surgical pain and modifies the brain-microbiota-gut axis in adolescent rats. Neuroimage 2025; 307:121057. [PMID: 39870258 DOI: 10.1016/j.neuroimage.2025.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions. Therefore, we investigated how daily consumption of a HFHS diet modified the development of PPSP, brain structure and function, and the microbiome. In addition, we identified significant correlations between the microbiome and brain in animals with PPSP. Male and female rats were maintained on a control or HFHS diet. Animals were further allocated to a sham or surgery on postnatal day (p) p35. The von Frey task measured mechanical nociceptive sensitivity at a chronic timepoint (p65-67). Between p68-72 rats underwent in-vivo MRI to examine brain volume and diffusivity. At p73 fecal samples were used for downstream 16 s rRNA sequencing. Spearman correlation analyses were performed between individual microbial abundance and MRI diffusivity to determine if specific bacterial species were associated with PPSP-induced brain changes. We found that consumption of a HFHS diet exacerbated PPSP in adolescents. The HFHS diet reduced overall brain volume and increased white and grey matter density. The HFHS diet interacted with the surgical intervention to modify diffusivity in numerous brain regions which were associated with specific changes to the microbiome. These findings demonstrate that premorbid characteristics can influence the development of PPSP and advance our understanding of the contribution that the microbiome has on function of the brain-microbiota-gut axis.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Matthew Macowan
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Angela Doshen
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Benjamin Marsland
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia.
| |
Collapse
|
2
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
3
|
Bella A, Diego AM, Finn DP, Roche M. Stress-induced changes in nociceptive responding post-surgery in preclinical rodent models. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1106143. [PMID: 36703943 PMCID: PMC9871907 DOI: 10.3389/fpain.2022.1106143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Chronic post-surgical pain affects up to 85% of individuals depending on the type of surgery, the extent of inflammation, tissue and/or nerve damage. Pre-surgical stress is associated with greater pain intensity, prolonged recovery and is one of the main risk factors for the development of chronic post-surgical pain. Clinically valid animal models provide an important means of examining the mechanisms underlying the effects of stress on post-surgical pain and identifying potential novel therapeutic targets. This review discusses the current data from preclinical animal studies examining the effect of stress on post-surgical pain, the potential underlying mechanisms and gaps in the knowledge that require further investigation.
Collapse
Affiliation(s)
- Ariadni Bella
- Physiology, School of Medicine, University of Galway, Galway, Ireland,Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Alba M. Diego
- Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland,Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland,Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, University of Galway, Galway, Ireland,Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland,Correspondence: Michelle Roche
| |
Collapse
|
4
|
Strain MM, Tongkhuya S, Wienandt N, Alsadoon F, Chavez R, Daniels J, Garza T, Trevino AV, Wells K, Stark T, Clifford J, Sosanya NM. Exploring combat stress exposure effects on burn pain in a female rodent model. BMC Neurosci 2022; 23:73. [PMID: 36474149 PMCID: PMC9724288 DOI: 10.1186/s12868-022-00759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
In the military, constant physiological and psychological stress encountered by Soldiers can lead to development of the combat and operational stress reaction (COSR), which can effect pain management. Similar effects are seen in other populations subjected to high levels of stress. Using a model of COSR, our lab recently showed that four weeks of stress prior to an injury increases pain sensitivity in male rats. With the roles of women in the military expanding and recent studies indicating sex differences in stress and pain processing, this study sought to investigate how different amounts of prior stress exposure affects thermal injury-induced mechanosensitivity in a female rat model of COSR. Adult female Sprague Dawley rats were exposed to the unpredictable combat stress (UPCS) procedure for either 2 or 4 weeks. The UPCS procedure included exposure to one stressor each day for four days. The stressors include: (1) sound stress for 30 min, (2) restraint stress for 4 h, (3) cold stress for 4 h, and (4) forced swim stress for 15 min. The order of stressors was randomized weekly. Mechanical and thermal sensitivity was tested twice weekly. After the UPCS procedure, a sub-set of rats received a thermal injury while under anesthesia. The development of mechanical allodynia and thermal hyperalgesia was examined for 14 days post-burn. UPCS exposure increased mechanosensitivity after two weeks. Interestingly, with more stress exposure, females seemed to habituate to the stress, causing the stress-induced changes in mechanosensitivity to decrease by week three of UPCS. If thermal injury induction occurred during peak stress-induced mechanosensitivity, after two weeks, this resulted in increased mechanical allodynia in the injured hind paw compared to thermal injury alone. This data indicates a susceptibility to increased nociceptive sensitization when injury is sustained at peak stress reactivity. Additionally, this data indicates a sex difference in the timing of peak stress. Post-mortem examination of the prefrontal cortex (PFC) showed altered expression of p-TrkB in 4-week stressed animals given a thermal injury, suggesting a compensatory mechanism. Future work will examine treatment options for preventing stress-induced pain to maintain the effectiveness and readiness of the Warfighter.
Collapse
Affiliation(s)
- Misty M. Strain
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Sirima Tongkhuya
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Nathan Wienandt
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Farah Alsadoon
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Roger Chavez
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Jamar Daniels
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Thomas Garza
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Alex V. Trevino
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Kenney Wells
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Thomas Stark
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - John Clifford
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Natasha M. Sosanya
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| |
Collapse
|
5
|
Jiang M, Huang Y, Hu L, Wu H, Liu Y, Ni K, Zhang X, Sun Y, Gu X. The transcription factor CCAAT/enhancer-binding protein β in spinal microglia contributes to pre-operative stress-induced prolongation of postsurgical pain. Mol Pain 2022; 18:17448069221099360. [PMID: 35451875 PMCID: PMC9257637 DOI: 10.1177/17448069221099360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Prolongation of postsurgical pain caused by pre-operative stress is a clinically significant problem, although the mechanisms are not fully understood. Stress can promote the pro-inflammatory activation of microglia, and the transcription factor CCAAT/enhancer-binding protein (C/EBP) β regulates pro-inflammatory gene expression in microglia. Therefore, we speculated that C/EBPβ in spinal microglia may have critical roles in the development of chronic postsurgical pain. Accordingly, in this study, we used a single prolonged stress (SPS) procedure and plantar incisions to evaluate the roles of C/EBPβ in postsurgical pain. Our experiments showed that SPS exposure prolonged mechanical allodynia, increased the expression of C/EBPβ and pro-inflammatory cytokines, and potentiated the activation of spinal microglia. Subsequently, microinjection of C/EBPβ siRNA attenuated the duration of SPS-prolonged postoperative mechanical allodynia and inhibited microglial activation in the spinal cord. Conversely, mimicking this increase in C/EBPβ promoted microglial activation via pretreatment with a pre-injection of AAV5-C/EBPβ, leading to prolongation of postsurgical pain. Overall, these results suggested that spinal microglia may play key roles in prolongation of postsurgical pain induced by pre-operative stress and that C/EBPβ may be a potential target for disease treatment.
Collapse
Affiliation(s)
- Ming Jiang
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yulin Huang
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Lijun Hu
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Hao Wu
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yue Liu
- Department of Anesthesiology66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Kun Ni
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Xiaokun Zhang
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yu'e Sun
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Xiaoping Gu
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| |
Collapse
|
6
|
Hong Y, Wu W, Wang S, Hao Q, Zheng H, Li S, Zhang X, Sun R. Angiotensin II type 1 receptor blockade attenuates posttraumatic stress disorder-related chronic pain by inhibiting glial activation in the spinal cord. Neuropharmacology 2021; 196:108704. [PMID: 34252405 DOI: 10.1016/j.neuropharm.2021.108704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Clinically, posttraumatic stress disorder (PTSD) and chronic pain are highly comorbid conditions, but the underlying mechanisms of and therapeutic strategies against PTSD-related pain remain unclear. Our previous studies suggested that dysregulation of neuroinflammation contributes to the development of stress-induced hyperalgesia. Recent studies reported that angiotensin II was a 'stress-related hormone', and could induce glial activation by stimulating the type 1 receptor (AT1R). In the present study, we aimed to investigate whether AT1R blockade could attenuate mechanical allodynia induced by PTSD-like stress. Adult male rats were exposed to single prolonged stress (SPS) to establish a model of PTSD-pain comorbidity. Our results showed that SPS exposure increased the levels of angiotensin II in the hippocampus, prefrontal cortex (PFC) and spinal cord; intraperitoneal injection of losartan attenuated SPS-induced mechanical allodynia, and suppressed SPS-induced glial activation (both microglia and astrocytes) and proinflammatory cytokine expression in the PFC and spinal cord, but not in the hippocampus. We further showed that intrathecal injection of losartan also exerted anti-hyperalgesic effect and suppressed SPS-induced glial activation and proinflammatory cytokine expression in the spinal cord. These results indicated that AT1R blockade by losartan attenuated mechanical allodynia induced by PTSD-like stress, and this may be attributed to the suppression of glial activation and proinflammatory cytokine expression in the spinal cord. Although further research is warranted to verify our findings in female rodents and to assess pharmacological effects of AT1R blockade in PFC and hippocampus, our study suggested the therapeutic potential of targeting AT1R in the treatment of PTSD-related chronic pain.
Collapse
Affiliation(s)
- Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Liu B, Li N, He Z, Zhang X, Duan G. Emerging Role of Serum Glucocorticoid-Regulated Kinase 1 in Pathological Pain. Front Mol Neurosci 2021; 14:683527. [PMID: 34093127 PMCID: PMC8177009 DOI: 10.3389/fnmol.2021.683527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
Currently, the management of acute and chronic pain in clinical practice remains unsatisfactory due to the existence of limited effective treatments, and novel therapeutic strategies for pathological pain are urgently needed. In the past few decades, the role of serum and glucocorticoid-inducible kinase 1 (SGK1) in the development of pain and diurnal rhythms has been implicated in numerous studies. The expression levels of SGK1 mRNA and protein were found to be elevated in the spinal cord and brain in various pathological pain models. Blocking SGK1 significantly attenuated pain-like responses and the development of pathological pain. These studies provide strong evidence that SGK1 plays a role in the development of various types of pathological pain and that targeting SGK1 may be a novel therapeutic strategy for pain management. In this review article, we provide evidence from animal models for the potential role of SGK1 in the regulation of pathological pain caused by inflammation, nerve injury, psychiatric disorders, and chronic opioid exposure.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Jiang M, Sun Y, Lei Y, Hu F, Xia Z, Liu Y, Ma Z, Gu X. GPR30 receptor promotes preoperative anxiety-induced postoperative hyperalgesia by up-regulating GABA A-α4β1δ subunits in periaqueductal gray in female rats. BMC Anesthesiol 2020; 20:93. [PMID: 32321426 PMCID: PMC7175561 DOI: 10.1186/s12871-020-01017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G-protein coupled estrogen receptor 30 (GPR30) was proved the specific estrogen receptor relating to mechanical hyperalgesia. Studies have shown that the GABAA receptor subunits α4, β1, and δ in the periaqueductal gray (PAG) neurons promote the descending facilitation system. This study inquired into whether and how GPR30 and GABAA-α4β1δ in the PAG promote preoperative anxiety-induced postoperative hyperalgesia in female rats. METHODS All the female rats were subjected to the single prolonged stress (SPS) to stimulate preoperative anxiety. Subsequently, mechanical allodynia was evaluated before and after the incision, based on the paw withdrawal mechanical threshold (PWMT). The selective GPR30 agonist G1 and antagonist G15 were locally microinjected into the PAG. The expression of GPR30, protein kinase A (PKA), and GABAA receptor subunits α4, β1, and δ in the PAG neurons were detected using western blotting and immunofluorescence. RESULTS Behavioral testing revealed that Group S and Group I decreased the nociceptive threshold levels of PWMT in female rats. PWMT in Group S + I decreased more than that of Group S and Group I. Further, results of western blotting showed the expression of GPR30, PKA, and GABAA α4, β1, and δ subunits significantly up-regulated in Group S + I, and immunofluorescence indicated that the neurons of PAG in Group S + I appeared simultaneously immunopositive for GPR30 and GABAA α4, β1, and δ receptors. After microinjection of G1 into the PAG, female rats with plantar incision continued to exhibit significant hyperalgesia until postoperative 48 h. On the other hand, microinjection of G15 with SPS and plantar incision procedure relieved postoperative hyperalgesia in female rats. Western blotting demonstrated that intra-PAG injection of G15 markedly decreased the GPR30, PKA, and GABAA α4, β1, and δ levels in Group G15 + I. CONCLUSIONS Our results indicate that the GPR30-PKA-GABAAα4β1δ pathway in the PAG promotes preoperative anxiety-induced postoperative hyperalgesia in female rats. This mechanism might be a potential novel therapeutic target for hyperalgesia in females.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Fan Hu
- Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengrong Xia
- Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
9
|
Zhang Z, Wu H, Liu Y, Gu X, Zhang W, Ma Z. The GCs-SGK1-ATP Signaling Pathway in Spinal Astrocytes Underlied Presurgical Anxiety-Induced Postsurgical Hyperalgesia. Anesth Analg 2020; 129:1163-1169. [PMID: 30113397 DOI: 10.1213/ane.0000000000003682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients undergoing surgery often feel anxious. Accumulating evidence indicated that presurgical anxiety was related to the more severe postsurgical pain. An animal model was established that exposed Sprague-Dawley rats to a single-prolonged stress (SPS) procedure to induce presurgical anxiety-like behaviors. The experiment revealed that presurgical anxiety not only aggravated but also prolonged postsurgical pain. However, the underlying mechanisms were unknown. METHODS The rats in group C + Cort, group I + Cort, group A + Cort, and group AI + Cort were injected with corticosterone. The rats in group C + RU486, group I + RU486, group A + RU486, and group AI + RU486 were injected with mifepristone (RU486). The rats in group C + GSK650394 and group AI + GSK650394 were injected with GSK650394. The rats in group C + FC1 and group AI + FC1 were injected with fluorocitrate (FC) 30 minutes before SPS, 30 minutes before incision, and on postoperative days 1, 2, 3, 4, and 5. The rats in group C + FC2 and group AI + FC2 were injected with FC on postoperative days 7, 8, 9, 10, 11, 12, and 13. The paw withdrawal mechanical threshold was assessed 24 hours before SPS and from postoperative days 1 to 28. The level of corticosterone was determined by enzyme-linked immunosorbent assay. The expression of serum/glucocorticoid regulated kinase 1 (SGK1), interleukin-1β, and tumor necrosis factor-α was visualized by Western blot. The concentrations of adenosine triphosphate (ATP) were measured by ATP assay kit. RESULTS This study showed SPS elevated plasma glucocorticoids and ATP release from astrocytes, which meant the mechanical pain hypersensitivity in presurgical anxiety-induced postsurgical hyperalgesia was dependent on GCs-SGK1-ATP signaling pathway. SGK1 protein level in astrocytes was increased in response to the glucocorticoid stimuli and enhanced the extracellular release of ATP. Furthermore, spinal astrocytes played a key role in the maintenance. Targeting spinal astrocytes in maintenance phase prevented the pathological progression. CONCLUSIONS These data suggested an important signaling pathway that affected the pain sensitivity after operation caused by presurgical anxiety.
Collapse
Affiliation(s)
- ZuoXia Zhang
- From the Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
10
|
Deftu AF, Suter MR. Glia and Pain in Spinal Cord. THE SENSES: A COMPREHENSIVE REFERENCE 2020:235-248. [DOI: 10.1016/b978-0-12-809324-5.24214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
11
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
12
|
Sun R, Liu Y, Hou B, Lei Y, Bo J, Zhang W, Sun Y, Zhang Y, Zhang Z, Liu Z, Huo W, Mao Y, Ma Z, Gu X. Perioperative activation of spinal α7 nAChR promotes recovery from preoperative stress-induced prolongation of postsurgical pain. Brain Behav Immun 2019; 79:294-308. [PMID: 30797046 DOI: 10.1016/j.bbi.2019.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/29/2018] [Revised: 01/20/2019] [Accepted: 02/20/2019] [Indexed: 12/01/2022] Open
Abstract
Preoperative stress could delay the recovery of postoperative pain and has been reported to be a risk factor for chronic postsurgical pain. As stress could facilitate the proinflammatory activation of microglia, we hypothesized that these cells may play a vital role in the development of preoperative stress-induced pain chronification after surgery. Our experiments were conducted in a rat model that consists of a single prolonged stress (SPS) procedure and plantar incision. A previous SPS exposure induced anxiety-like behaviors, prolonged incision-induced mechanical allodynia, and potentiated the activation of spinal microglia. Based on the results from ex vivo experiments, spinal microglia isolated from SPS-exposed rats secreted more proinflammatory cytokines upon challenge with LPS. Our results also demonstrated that microglia played a more important role than astrocytes in the initiation of SPS-induced prolongation of postsurgical pain. We further explored the therapeutic potential of agonism of α7 nAChR, an emerging anti-inflammatory target, for SPS-induced prolongation of postsurgical pain. Multiple intrathecal (i.t.) injections of PHA-543613 (an α7 nAChR agonist) or PNU-120596 (a type II positive allosteric modulator) during the perioperative period shortened the duration of postsurgical pain after SPS and suppressed SPS-potentiated microglia activation, but their effects were abolished by pretreatment with methyllycaconitine (an α7 nAChR antagonist; i.t.). Based on the results from ex vivo experiments, the anti-inflammatory effects of PHA-543613 and PNU-120596 may have been achieved by the direct modulation of microglia. In conclusion, stress-induced priming of spinal microglia played a key role in the initiation of preoperative stress-induced prolongation of postsurgical pain, and PHA-543613 and PNU-120596 may be potential candidates for preventing pain chronification after surgery.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Bailing Hou
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jinhua Bo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yu'E Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ying Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhe Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wenwen Huo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yanting Mao
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
13
|
Yang C, Han P, Ruan F, Zhou T, Luo B, Qiu Y, Lin Y, Lin Z, He C. Lactational exposure to environmentally relevant benzo(a)pyrene causes astrocytic activation and anxiety-like behavior in male mice. CHEMOSPHERE 2019; 221:67-74. [PMID: 30634150 DOI: 10.1016/j.chemosphere.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have shown the adversely neurodevelopmental effects of exposure to benzo(a)pyrene (BaP) at early life stage. However, it is unclear the effects of lactational exposure to environmentally relevant BaP on anxiety-like behavior and the molecular mechanisms related. In this study, lactational exposure to 1 and 10 μg/kg bw BaP from postnatal day 3-21 caused anxiety-like behavior and alterations of the expressions of the neurodevelopment and anxiety-related genes in adolescence male mice using O cycle maze. Moreover, BaP exposure increased the expression level of glial fibrillary acidic protein, a typical marker of astrocytes, in hippocampus of male offspring. The release of pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α was also elevated in BaP-treated offspring. Further, lactational exposure to BaP decreased the level of glutathione and the expressions of antioxidant genes (Thioredoxin 1 and Glutaredoxin 2) in male offspring. Our study demonstrated that environmentally relevant BaP lactational exposure caused anxiety-like behavior in male offspring involved in astrocytic activation, neuroinflammation, and antioxidant capability dysfunction.
Collapse
Affiliation(s)
- Chuanli Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Peiyu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tengjian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Bing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yang Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuchun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Chengyong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
14
|
Arora V, Martin TJ, Aschenbrenner CA, Hayashida K, Kim SA, Parker RA, Eisenach JC, Peters CM. Psychosocial Stress Delays Recovery of Postoperative Pain Following Incisional Surgery in the Rat. Neuroscience 2018; 382:35-47. [PMID: 29694918 DOI: 10.1016/j.neuroscience.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/21/2023]
Abstract
Psychosocial factors such as anxiety, depression and catastrophizing, commonly associated with established chronic pain, also may be associated with an increased risk of chronic postsurgical pain (CPSP) when present preoperatively. We used a repeat social defeat (RSD) paradigm to induce psychosocial stress in rodents prior to incisional surgery of the paw. Mixed effects growth curve models were utilized to examine resolution of mechanical hypersensitivity in rats for four weeks following surgery. Eight days following surgery, immunohistochemistry was conducted to examine glial activation as well as evoked neuronal activation in the spinal cord. Here we document that RSD resulted in reduced weight gain and increased depressive symptoms prior to surgery. Rats exposed to RSD displayed delayed resolution of mechanical hypersensitivity in the ipsilateral paw following surgery compared to non-defeated rats. Prior exposure to RSD significantly increased microglial activation and neuronal sensitization (pERK-IR) within the ipsilateral spinal cord. In conclusion, we found that chronic social stress alters the neurobiological response to surgical injury, resulting in slowed recovery. This model maybe useful for future interventional studies examining the mechanistic interactions between depression and risk of CPSP.
Collapse
Affiliation(s)
- Vipin Arora
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas J Martin
- Department of Anesthesiology and Physiology & Pharmacology, WFSM, Winston-Salem, NC, USA
| | - Carol A Aschenbrenner
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kenichiro Hayashida
- Department of Neurophysiology, Akita University School of Medicine, Akita, Japan
| | - Susy A Kim
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Renee A Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James C Eisenach
- Department of Anesthesiology and Physiology & Pharmacology, WFSM, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Zhang Z, Ma Z. Saturated fatty acids recognition by the CD14-TLR4-MD2 complex may engage in the presurgical anxiety-induced persistent postsurgical pain. Med Hypotheses 2017; 103:105-107. [PMID: 28571793 DOI: 10.1016/j.mehy.2017.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2016] [Revised: 01/07/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
It has been proved that presurgical anxiety can induce the development and progression of persistent postsurgical pain through elevating circulating corticosterone levels and activating the glucocorticoids receptor. Under stressful circumstances, the concentration of blood saturated fatty acids (SFAs) increases rapidly to provide enough ATP for individuals' survival owing to stress hormones such as glucocorticoid, catecholamine and glucagon. It is reported that SFAs can trigger an inflammatory response through CD14-TLR4-MD2 complex. The role of TLR4 and its downstream signaling pathway has been confirmed in the pathogenesis of cancer pain and inflammatory pain. Furthermore, a newly clinical research uncovers that the children with recurrent abdominal pain, which is triggered by early psychosomatic stress, have higher levels of SFAs than healthy individuals. We therefore put forward the hypothesis that the elevated level of SFAs induced by stress hormones may be engaged in the presurgical anxiety-induced persistent postsurgical pain. If established, it's of important clinical significance, which will make great contributions to the prevention and treatment of the presurgical anxiety-induced persistent postsurgical pain.
Collapse
Affiliation(s)
- Zuoxia Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Jiangsu, China.
| |
Collapse
|
16
|
Sun R, Zhang W, Bo J, Zhang Z, Lei Y, Huo W, Liu Y, Ma Z, Gu X. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation. Neuroscience 2016; 344:243-254. [PMID: 28039041 DOI: 10.1016/j.neuroscience.2016.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023]
Abstract
The high prevalence of chronic pain in posttraumatic stress disorder (PTSD) individuals has been widely reported by clinical studies, which emphasized an urgent need to uncover the underlying mechanisms and identify potential therapeutic targets. Recent studies suggested that targeting activated glia and their pro-inflammatory products may provide a novel and effective therapy for the stress-related pain. In this study, we investigated whether activation of alpha-7 nicotinic acetylcholine receptor (α7 nAChR), a novel anti-inflammatory target, could attenuate PTSD-related chronic pain. The experiments were conducted in a rat model of single prolonged stress (SPS), an established model of PTSD-pain comorbidity. We found that SPS exposure produced persistent mechanical allodynia. Immunohistochemical and enzyme-linked immuno sorbent assay analysis showed that SPS also induced elevated activation of glia cells (including microglia and astrocytes) and accumulation of pro-inflammatory cytokines in spinal cord. In another experiment, we found that intrathecal injection of PHA-543613, a selective α7 nAchR agonist, attenuated the SPS-evoked allodynia in a dose dependent manner. However, this anti-hyperalgesic effect was blocked by pretreatment with methyllycaconitine (MLA), a selective α7 nAchR antagonist. Further analyses showed that PHA-543613 suppressed SPS-induced spinal glial activation and SPS-elevated spinal pro-inflammatory cytokines, and these were abolished by MLA. Taken together, the present study showed that spinal activation of α7 nAChR by PHA-543613 attenuated mechanical allodynia induced by PTSD-like stress, and the suppression of spinal glial activation may underlie this anti-hyperalgesic effect. Our study demonstrated the therapeutic potential of targeting α7 nAChR in the treatment of PTSD-related chronic pain.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jinhua Bo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wenwen Huo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
17
|
Sun R, Zhang Z, Lei Y, Liu Y, Lu C, Rong H, Sun Y, Zhang W, Ma Z, Gu X. Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain. Mol Pain 2016; 12:12/0/1744806916679166. [PMID: 27852966 PMCID: PMC5117253 DOI: 10.1177/1744806916679166] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2016] [Revised: 09/12/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cui'e Lu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Rong
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu'e Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Glucocorticoid-Potentiated Spinal Microglia Activation Contributes to Preoperative Anxiety-Induced Postoperative Hyperalgesia. Mol Neurobiol 2016; 54:4316-4328. [PMID: 27339881 DOI: 10.1007/s12035-016-9976-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2016] [Accepted: 06/14/2016] [Indexed: 12/30/2022]
Abstract
Clinically, preoperative anxiety adversely affected postoperative hyperalgesia. As stress-induced glucocorticoids (GCs) were reported to sensitize the activation of microglia, the present study investigated whether and how GCs and microglia played in the process of preoperative anxiety-induced postoperative hyperalgesia. The study used an animal model that exposed rats to single prolonged stress (SPS) procedure to induce preoperative anxiety-like behaviors 24 h before the plantar incisional surgery. Behavioral testing revealed that preoperative SPS enhanced the mechanical allodynia induced by plantar incision. SPS was also found to induce elevated circulating corticosterone levels, potentiate the activation of spinal microglia, and increase the expression of spinal proinflammatory cytokines. Inhibition of microglia by pretreatment with minocycline attenuated the SPS-enhanced mechanical allodynia, and this was accompanied by decreased activation of spinal microglia and expression of proinflammatory cytokines. Another experiment was conducted by administering RU486, the GC receptor (GR) antagonist, to rats. The results showed that RU486 suppressed SPS-induced and SPS-potentiated proinflammatory activation of spinal microglia and revealed analgesic effects. Together, these data indicated that inhibition of stress-induced GR activation attenuated the preoperative anxiety-induced exacerbation of postoperative pain, and the suppression of spinal microglia activation may underlie this anti-hyperalgesia effect. Pending further studies, these findings suggested that GR and spinal microglia may play important roles in the development of preoperative anxiety-induced postoperative hyperalgesia and may serve as novel targets to prevent this phenomenon.
Collapse
|
19
|
Green DP, Patil MJ, Akopian AN. Influence of hypophysectomy, ovariectomy and gonadectomy on postoperative hypersensitivity in rats. ACTA ACUST UNITED AC 2016; 2:171-175. [PMID: 29399371 PMCID: PMC5791901 DOI: 10.15761/gapm.1000145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Surgical procedures lead to profound and sustained (up to 1–2 weeks) activation of the pituitary gland, resulting in changes in endocrine function. Questions remain on whether activation of the pituitary influences the threshold and development time-course of postoperative pain. To address these questions, we evaluated postoperative hypersensitivity in female and male rats with ablated pituitary and gonadal hormone productions via hypophysectomy, ovariectomy and gonadectomy, respectively. Plantar incision, a model of acute postoperative pain, or sham operation was performed on rat hind paws. Hypophysectomy, ovariectomy and gonadectomy were achieved by surgical disconnection of pituitary, ovaries and testicles, respectively. Postoperative thermal and mechanical hypersensitivity were monitored for 7 days post incision. Hypophysectomy on female and male rats produced statistically similar thermal and mechanical postoperative hypersensitivity thresholds and time-courses as compared to intact estrous female and male rats. Moreover, ovariectomy and gonadectomy did not significantly change postoperative hypersensitivity observed in control female and male animals. Our experiments demonstrate that hypophysectomy, ovariectomy and gonadectomy do not significantly impact postoperative hypersensitivity observed in normal female and male animals. These data suggest that surgery-induced changes in the endocrine system via activation of pituitary and subsequently gonadal tissues have little impact on the threshold and development of postoperative pain in female and male rats.
Collapse
Affiliation(s)
- Dustin P Green
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Mayur J Patil
- Department of Pharmacology, UT Health Science Center, San Antonio, TX, USA
| | - Armen N Akopian
- Department of Pharmacology, UT Health Science Center, San Antonio, TX, USA.,Department of Endodontics, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|