1
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
2
|
Khan MAS, Chang SL. Alcohol and the Brain-Gut Axis: The Involvement of Microglia and Enteric Glia in the Process of Neuro-Enteric Inflammation. Cells 2023; 12:2475. [PMID: 37887319 PMCID: PMC10605902 DOI: 10.3390/cells12202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Binge or chronic alcohol consumption causes neuroinflammation and leads to alcohol use disorder (AUD). AUD not only affects the central nervous system (CNS) but also leads to pathologies in the peripheral and enteric nervous systems (ENS). Thus, understanding the mechanism of the immune signaling to target the effector molecules in the signaling pathway is necessary to alleviate AUD. Growing evidence shows that excessive alcohol consumption can activate neuroimmune cells, including microglia, and change the status of neurotransmitters, affecting the neuroimmune system. Microglia, like peripheral macrophages, are an integral part of the immune defense and represent the reticuloendothelial system in the CNS. Microglia constantly survey the CNS to scavenge the neuronal debris. These cells also protect parenchymal cells in the brain and spinal cord by repairing nerve circuits to keep the nervous system healthy against infectious and stress-derived agents. In an activated state, they become highly dynamic and mobile and can modulate the levels of neurotransmitters in the CNS. In several ways, microglia, enteric glial cells, and macrophages are similar in terms of causing inflammation. Microglia also express most of the receptors that are constitutively present in macrophages. Several receptors on microglia respond to the inflammatory signals that arise from danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), endotoxins (e.g., lipopolysaccharides), and stress-causing molecules (e.g., alcohol). Therefore, this review article presents the latest findings, describing the roles of microglia and enteric glial cells in the brain and gut, respectively, and their association with neurotransmitters, neurotrophic factors, and receptors under the influence of binge and chronic alcohol use, and AUD.
Collapse
Affiliation(s)
- Mohammed A. S. Khan
- Department of Neurosurgery, Brigham Hospital for Children, Harvard Medical School, Boston, MA 02115, USA;
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
3
|
Luo P, Li X, Gao Y, Chen Z, Zhang Q, Wang Z, Tian X. Central administration of human opiorphin alleviates dextran sodium sulfate-induced colitis in mice through activation of the endogenous opioid system. Front Pharmacol 2022; 13:904926. [PMID: 36176442 PMCID: PMC9513434 DOI: 10.3389/fphar.2022.904926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
The opioid system plays a crucial role in maintaining gastrointestinal homeostasis. Endogenous opioid peptide enkephalins have anti-inflammatory effect and participate in the treatment of inflammatory bowel diseases (IBDs). Here, we investigated the effect of natural enkephalinase inhibitor human opiorphin (HO) on dextran sodium sulfate (DSS)-induced colitis in mice. Our results showed that central administration of HO attenuated DSS-induced colitis, as indicated by the reduction of disease activity index (DAI) scores, macroscopic scores, histological scores, and the myeloperoxidase (MPO) activity. Moreover, HO alleviated DSS-induced inflammation by decreasing inflammatory cytokines TNF-α, IL-6, and IL-1β, and increasing anti-inflammatory cytokine IL-10 in both serum and colon tissues in DSS-treated mice. The potential anti-inflammatory effect of HO at a dose of 40 μg/kg was observed as evidenced by a decrease in nuclear factor κB (NF-κB) p65, toll-like receptor-4 (TLR-4), iNOS, and COX-2. HO also improved intestinal barrier function by enhancing the expression of tight junction proteins. Furthermore, HO treatment significantly inhibited activities of neutral endopeptidase (NEP) and aminopeptidase N (APN), elevated serum enkephalins concentrations, and increased expressions of mu and delta opioid receptors. In addition, pretreatment with opioid receptor antagonist naloxone hydrochloride (NH) compromised the protective effect of HO and aggravated colitis symptoms, as indicated by inhibited anti-inflammatory effects, disrupted intestinal barrier function, and decreased opioid receptor activity. In conclusion, these data indicate that HO protects against DSS-induced colitis by inhibiting TLR4/NF-κB pathway activation and improving intestinal barrier function through activation of the endogenous opioid system. Therefore, targeting the opioid system with peptidase inhibitors intervention would be a novel strategy in the therapy of IBD.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuelin Li
- National Demonstration Center for Experimental Biology Education, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhengjun Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Quanwei Zhang, ; Zhimin Wang, ; Xiaozhu Tian,
| | - Zhimin Wang
- Gansu Provincial Hospital PET/CT Center, Lanzhou, China
- *Correspondence: Quanwei Zhang, ; Zhimin Wang, ; Xiaozhu Tian,
| | - Xiaozhu Tian
- National Demonstration Center for Experimental Biology Education, School of Life Science, Lanzhou University, Lanzhou, China
- *Correspondence: Quanwei Zhang, ; Zhimin Wang, ; Xiaozhu Tian,
| |
Collapse
|
4
|
Mas-Orea X, Basso L, Blanpied C, Gaveriaux-Ruff C, Cenac N, Dietrich G. Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. J Neuroinflammation 2022; 19:7. [PMID: 34991641 PMCID: PMC8740424 DOI: 10.1186/s12974-021-02352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Lilian Basso
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
- INFINITy, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Catherine Blanpied
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | | | - Nicolas Cenac
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Gilles Dietrich
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
5
|
Nagata K, Nagase H, Okuzumi A, Nishiyama C. Delta Opioid Receptor Agonists Ameliorate Colonic Inflammation by Modulating Immune Responses. Front Immunol 2021; 12:730706. [PMID: 34630408 PMCID: PMC8493000 DOI: 10.3389/fimmu.2021.730706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The opioid receptors play important roles in the regulation of sense and emotions. Although it is recently revealed that opioid receptors are also expressed in various cells, but not restricted in the central nervous system, the effects of opioids on peripheral immune cells are largely unknown. In the current study, we evaluated the effect of opioids on immune system by using selective agonists for δ opioid receptor. Systemic administration of KNT-127 or intraperitoneal injection of YNT-2715 (a KNT-127-related compound that cannot pass through the blood-brain barrier) significantly alleviated the pathology of dextran sodium sulfate-induced colitis. In KNT-127-treated mice, the levels of an inflammatory cytokine IL-6 in the serum, and macrophages in the mesenteric lymph nodes (MLNs) were decreased in the progression stage, and those of regulatory T cells (Tregs) in the MLN were increased in the recovery stage. In vitro experiments revealed that KNT-127 inhibited the release of IL-6 and another inflammatory cytokine TNF-α from macrophages and accelerated the development of Tregs. Our study suggests that δ opioid agonists act directly on immune cells to improve the pathology of the colitis and can be candidates of immunomodulatory drugs.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Colitis/chemically induced
- Colitis/immunology
- Colitis/metabolism
- Colitis/prevention & control
- Colon/drug effects
- Colon/immunology
- Colon/metabolism
- Dextran Sulfate
- Disease Models, Animal
- Female
- Interleukin-6/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Morphinans/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Kazuki Nagata
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Advanced Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ayumi Okuzumi
- Global Science Campus, Tokyo University of Science, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Advanced Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
6
|
Zhao MJ, Wang MY, Ma L, Ahmad KA, Wang YX. Bulleyaconitine A Inhibits Morphine-Induced Withdrawal Symptoms, Conditioned Place Preference, and Locomotor Sensitization Via Microglial Dynorphin A Expression. Front Pharmacol 2021; 12:620926. [PMID: 33716748 PMCID: PMC7953057 DOI: 10.3389/fphar.2021.620926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Bulleyaconitine A (BAA), a C19-diterpenoid alkaloid, has been prescribed as a nonnarcotic analgesic to treat chronic pain over four decades in China. The present study investigated its inhibition in morphine-induced withdrawal symptoms, conditioned place preference (CPP) and locomotor sensitization, and then explored the underlying mechanisms of actions. Multiple daily injections of morphine but not BAA up to 300 μg/kg/day into mice evoked naloxone-induced withdrawal symptoms (i.e., shakes, jumps, genital licks, fecal excretion and body weight loss), CPP expression, and locomotor sensitization. Single subcutaneous BAA injection (30–300 μg/kg) dose-dependently and completely attenuated morphine-induced withdrawal symptoms, with ED50 values of 74.4 and 105.8 μg/kg in shakes and body weight loss, respectively. Subcutaneous BAA (300 μg/kg) also totally alleviated morphine-induced CPP acquisition and expression and locomotor sensitization. Furthermore, subcutaneous BAA injection also specifically stimulated dynorphin A expression in microglia but not astrocytes or neurons in nucleus accumbens (NAc) and hippocampal, measured for gene and protein expression and double immunofluorescence staining. In addition, subcutaneous BAA-inhibited morphine-induced withdrawal symptoms and CPP expression were totally blocked by the microglial metabolic inhibitor minocycline, dynorphin A antiserum, or specific KOR antagonist GNTI, given intracerebroventricularly. These results, for the first time, illustrate that BAA attenuates morphine-induced withdrawal symptoms, CPP expression, and locomotor sensitization by stimulation of microglial dynorphin A expression in the brain, suggesting that BAA may be a potential candidate for treatment of opioids-induced physical dependence and addiction.
Collapse
Affiliation(s)
- Meng-Jing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mi-Ya Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
7
|
Lashgari NA, Roudsari NM, Zandi N, Pazoki B, Rezaei A, Hashemi M, Momtaz S, Rahimi R, Shayan M, Dehpour AR, Abdolghaffari AH. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 2021; 48:855-874. [PMID: 33394234 DOI: 10.1007/s11033-020-06095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atiyeh Rezaei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnoosh Hashemi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran. .,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Hegde S, Lin YM, Fu Y, Savidge T, Shi XZ. Precision Lactobacillus reuteri therapy attenuates luminal distension-associated visceral hypersensitivity by inducing peripheral opioid receptors in the colon. Pain 2020; 161:2737-2749. [PMID: 32569084 PMCID: PMC7669621 DOI: 10.1097/j.pain.0000000000001967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Luminal distension and abdominal pain are major clinical hallmarks of obstructive bowel disorders and functional bowel disorders linked to gut dysbiosis. Our recent studies found that chronic lumen distension increased visceral sensitivity and decreased abundance of gut commensal Lactobacillus reuteri in a rodent model of partial colon obstruction (OB). To establish causation, we performed precision microbial therapy to assess whether recolonization of L. reuteri prevents visceral hypersensitivity in lumen distension, and if so, to identify the gut-microbiota mechanism. Lumen distension was induced in Sprague-Dawley rats by implanting an OB band in the distal colon for up to 7 days. L. reuteri strains or vehicle were gavage ingested 1 × 10 colony-forming units/g daily starting 2 days before OB. L. reuteri rat strains that were able to recolonize obstructed colon significantly improved food intake and body weight in OB rats, and attenuated referred visceral hyperalgesia measured by the withdrawal response to von Frey filament applications to the abdomen. Mechanistically, L. reuteri treatment attenuated hyperexcitability of the dorsal root ganglia neurons projecting to the distended colon by promoting opioid receptor function in affected tissues. The expression of µ, δ, and κ opioid receptors was significantly downregulated in colonic muscularis externae and sensory neurons in OB rats. However, L. reuteri treatment prevented the loss of opioid receptors. Furthermore, administration of peripheral opioid receptor antagonist naloxone methiodide abolished the analgesic effect of L. reuteri in OB. In conclusion, precision L. reuteri therapy prevents lumen distension-associated visceral hypersensitivity by local bacterial induction of opioid receptors.
Collapse
Affiliation(s)
- Shrilakshmi Hegde
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - You-Min Lin
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu Fu
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Tor Savidge
- Dept. of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Xuan-Zheng Shi
- Dept. of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Grubišić V, McClain JL, Fried DE, Grants I, Rajasekhar P, Csizmadia E, Ajijola OA, Watson RE, Poole DP, Robson SC, Christofi FL, Gulbransen BD. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation. Cell Rep 2020; 32:108100. [PMID: 32905782 PMCID: PMC7518300 DOI: 10.1016/j.celrep.2020.108100] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Mechanisms resulting in abdominal pain include altered neuro-immune interactions in the gastrointestinal tract, but the signaling processes that link immune activation with visceral hypersensitivity are unresolved. We hypothesized that enteric glia link the neural and immune systems of the gut and that communication between enteric glia and immune cells modulates the development of visceral hypersensitivity. To this end, we manipulated a major mechanism of glial intercellular communication that requires connexin-43 and assessed the effects on acute and chronic inflammation, visceral hypersensitivity, and immune responses. Deleting connexin-43 in glia protected against the development of visceral hypersensitivity following chronic colitis. Mechanistically, the protective effects of glial manipulation were mediated by disrupting the glial-mediated activation of macrophages through the macrophage colony-stimulating factor. Collectively, our data identified enteric glia as a critical link between gastrointestinal neural and immune systems that could be harnessed by therapies to ameliorate abdominal pain.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA
| | - Jonathon L McClain
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA
| | - David E Fried
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA
| | - Iveta Grants
- Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, 420 West 12th Avenue, Room 216, Columbus, OH 43210, USA
| | - Pradeep Rajasekhar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Melbourne, VIC, Australia
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine and of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Olujimi A Ajijola
- Cardiac Arrhythmia Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Ralph E Watson
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Melbourne, VIC, Australia
| | - Simon C Robson
- Division of Gastroenterology, Department of Medicine and of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Fievos L Christofi
- Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, 420 West 12th Avenue, Room 216, Columbus, OH 43210, USA
| | - Brian D Gulbransen
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
11
|
Bagley EE, Ingram SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020; 173:108131. [PMID: 32422213 DOI: 10.1016/j.neuropharm.2020.108131] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
The opioid epidemic has led to a serious examination of the use of opioids for the treatment of pain. Opioid drugs are effective due to the expression of opioid receptors throughout the body. These receptors respond to endogenous opioid peptides that are expressed as polypeptide hormones that are processed by proteolytic cleavage. Endogenous opioids are expressed throughout the peripheral and central nervous system and regulate many different neuronal circuits and functions. One of the key functions of endogenous opioid peptides is to modulate our responses to pain. This review will focus on the descending pain modulatory circuit which consists of the ventrolateral periaqueductal gray (PAG) projections to the rostral ventromedial medulla (RVM). RVM projections modulate incoming nociceptive afferents at the level of the spinal cord. Stimulation within either the PAG or RVM results in analgesia and this circuit has been studied in detail in terms of the actions of exogenous opioids, such as morphine and fentanyl. Further emphasis on understanding the complex regulation of endogenous opioids will help to make rational decisions with regard to the use of opioids for pain. We also include a discussion of the actions of endogenous opioids in the amygdala, an upstream brain structure that has reciprocal connections to the PAG that contribute to the brain's response to pain.
Collapse
Affiliation(s)
- Elena E Bagley
- Discipline of Pharmacology and Charles Perkins Centre, University of Sydney, NSW, 2006, Australia
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
13
|
Basso L, Benamar M, Mas-Orea X, Deraison C, Blanpied C, Cenac N, Saoudi A, Dietrich G. Endogenous control of inflammatory visceral pain by T cell-derived opioids in IL-10-deficient mice. Neurogastroenterol Motil 2020; 32:e13743. [PMID: 31588671 DOI: 10.1111/nmo.13743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The opioid-mediated analgesic activity of mucosal CD4+ T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4+ T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation. METHODS Endogenous control of visceral pain by opioids locally produced in inflamed mucosa was assessed in IL-10-deficient mice. KEY RESULTS CD4+ T lymphocytes but not F4/80+ macrophages isolated from the lamina propria of IL-10-deficient mice with colitis express enkephalin-containing opioid peptides as assessed by cytofluorometry. Colitis in IL-10-/- mice was not associated with abdominal pain. Intraperitoneal injection of naloxone-methiodide, a peripheral opioid receptor antagonist, induced abdominal hypersensitivity in IL-10-/- mice with colitis. CONCLUSION AND INFERENCES Opioid-mediated analgesic activity of mucosal T lymphocytes remains operating in IL-10-/- mice with impaired immune regulation. The data suggest that endogenous T cell-derived opioids might reduce inflammation-induced abdominal pain in inflammatory bowel diseases associated with homozygous "loss of function mutations" in interleukin-10.
Collapse
Affiliation(s)
- Lilian Basso
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Xavier Mas-Orea
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | | | - Nicolas Cenac
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Gilles Dietrich
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Carbone SE, Poole DP. Inflammation without pain: Immune-derived opioids hold the key. Neurogastroenterol Motil 2020; 32:e13787. [PMID: 31999404 DOI: 10.1111/nmo.13787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023]
Abstract
Visceral pain is commonly associated with acute or remitting inflammatory bowel disease (IBD). In marked contrast, chronic IBD is often painless, even in the presence of active inflammation. This suggests that inflammation in itself is insufficient to sustain altered nociceptive signaling and raises the possibility that there is an endogenous analgesic system in effect in chronic disease. A new study by Basso et al. published in this issue of Neurogastroenterology & Motility provides additional support for an immune-mediated mechanism that suppresses visceral hypersensitivity. The authors examined visceral pain in the IL-10-piroxicam model of chronic colitis, which differs from other experimental IBD models in that it involves immune suppression. During active inflammation, responses by these mice to graded increases in colorectal distension were equivalent to healthy controls, consistent with normal afferent signaling. However, treatment with a peripherally restricted opioid receptor antagonist resulted in marked visceral hypersensitivity to the same stimuli. This effect was attributed to the production of endogenous opioids by colitogenic CD4+ T cells present in the mucosa. This mini-review provides a brief overview of analgesia by immune-derived opioids under inflammatory conditions and highlights how the work of Basso et al. contributes to this area of research. Potential pharmacological approaches to harness or mimic this system are provided. These strategies may prove to be an effective means through which targeted and sustained relief of IBD pain may be achieved.
Collapse
Affiliation(s)
- Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.,ARC CoE in Convergent Bio-Nano Science & Technology, Parkville, Vic, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.,ARC CoE in Convergent Bio-Nano Science & Technology, Parkville, Vic, Australia
| |
Collapse
|
15
|
Dehydroepiandrosterone sulfate improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Eur J Pharmacol 2019; 852:198-206. [DOI: 10.1016/j.ejphar.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
16
|
Fabisiak A, Sobocińska M, Kamysz E, Fichna J, Zielińska M. Antinociceptive potency of enkephalins and enkephalinase inhibitors in the mouse model of colorectal distension-proof-of-concept. Chem Biol Drug Des 2018; 92:1387-1392. [DOI: 10.1111/cbdd.13186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/23/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry; Faculty of Medicine; Medical University of Lodz; Lodz Poland
| | - Małgorzata Sobocińska
- Department of Molecular Biotechnology; Faculty of Chemistry; University of Gdansk; Gdansk Poland
| | - Elżbieta Kamysz
- Department of Molecular Biotechnology; Faculty of Chemistry; University of Gdansk; Gdansk Poland
| | - Jakub Fichna
- Department of Biochemistry; Faculty of Medicine; Medical University of Lodz; Lodz Poland
| | - Marta Zielińska
- Department of Biochemistry; Faculty of Medicine; Medical University of Lodz; Lodz Poland
| |
Collapse
|
17
|
Maldonado R, Baños JE, Cabañero D. Usefulness of knockout mice to clarify the role of the opioid system in chronic pain. Br J Pharmacol 2018; 175:2791-2808. [PMID: 29124744 DOI: 10.1111/bph.14088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Several lines of knockout mice deficient in the genes encoding each component of the endogenous opioid system have been used for decades to clarify the specific role of the different opioid receptors and peptide precursors in many physiopathological conditions. The use of these genetically modified mice has improved our knowledge of the specific involvement of each endogenous opioid component in nociceptive transmission during acute and chronic pain conditions. The present review summarizes the recent advances obtained using these genetic tools in understanding the role of the opioid system in the pathophysiological mechanisms underlying chronic pain. Behavioural data obtained in these chronic pain models are discussed considering the peculiarities of the behavioural phenotype of each line of knockout mice. These studies have identified the crucial role of specific components of the opioid system in different manifestations of chronic pain and have also opened new possible therapeutic approaches, such as the development of opioid compounds simultaneously targeting several opioid receptors. However, several questions still remain open and require further experimental effort to be clarified. The novel genetic tools now available to manipulate specific neuronal populations and precise genome editing in mice will facilitate in a near future the elucidation of the role of each component of the endogenous opioid system in chronic pain. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Josep Eladi Baños
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|