1
|
Gosso S, Turturici M, Franchino C, Colombo E, Pasquarelli A, Carbone E, Carabelli V. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J Physiol 2014; 592:3215-30. [PMID: 24879870 DOI: 10.1113/jphysiol.2014.274951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution.
Collapse
Affiliation(s)
- Sara Gosso
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| | - Marco Turturici
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy Department of Neuroscience, University of Turin, 10125, Turin, Italy
| | - Claudio Franchino
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| | - Elisabetta Colombo
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy Institute of Electron Devices and Circuits, University of Ulm, 89069, Ulm, Germany
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, University of Ulm, 89069, Ulm, Germany
| | - Emilio Carbone
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| |
Collapse
|
2
|
Barnes EO, Fernández-la-Villa A, Pozo-Ayuso DF, Castaño-Alvarez M, Lewis GE, Dale SE, Marken F, Compton RG. Interdigitated ring electrodes: Theory and experiment. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Mathematical modeling of interdigitated electrode arrays in finite electrochemical cells. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Barnes EO, Lewis GEM, Dale SEC, Marken F, Compton RG. Generator-collector double electrode systems: A review. Analyst 2012; 137:1068-81. [DOI: 10.1039/c2an16174e] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Redox cycling in nanofluidic channels using interdigitated electrodes. Anal Bioanal Chem 2009; 394:447-56. [DOI: 10.1007/s00216-008-2575-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 11/27/2022]
|
6
|
Odijk M, Olthuis W, Dam V, van den Berg A. Simulation of Redox-Cycling Phenomena at Interdigitated Array (IDA) Electrodes: Amplification and Selectivity. ELECTROANAL 2008. [DOI: 10.1002/elan.200704105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
|