1
|
Evtyugin GA, Porfir’eva AV. Determination of Organic Compounds in Aqueous–Organic and Dispersed Media Using Electrochemical Methods of Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
WANIBUCHI M, KITAZUMI Y, SHIRAI O, KANO K. Enhancement of the Direct Electron Transfer-type Bioelectrocatalysis of Bilirubin Oxidase at the Interface between Carbon Particles. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.20-00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mizue WANIBUCHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
3
|
Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized Enzymes in Biosensor Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E121. [PMID: 30609693 PMCID: PMC6337536 DOI: 10.3390/ma12010121] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/15/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022]
Abstract
Enzyme-based biosensing devices have been extensively developed over the last few decades, and have proven to be innovative techniques in the qualitative and quantitative analysis of a variety of target substrates over a wide range of applications. Distinct advantages that enzyme-based biosensors provide, such as high sensitivity and specificity, portability, cost-effectiveness, and the possibilities for miniaturization and point-of-care diagnostic testing make them more and more attractive for research focused on clinical analysis, food safety control, or disease monitoring purposes. Therefore, this review article investigates the operating principle of enzymatic biosensors utilizing electrochemical, optical, thermistor, and piezoelectric measurement techniques and their applications in the literature, as well as approaches in improving the use of enzymes for biosensors.
Collapse
Affiliation(s)
- Hoang Hiep Nguyen
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon 34113, Korea.
| | - Sun Hyeok Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon 34113, Korea.
| | - Ui Jin Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, 99 Daehangno, Yuseong-Gu, Daejeon 34134, Korea.
| | - Cesar D Fermin
- Department of Biology, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36830, USA.
| | - Moonil Kim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon 34113, Korea.
- Department of Biology, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36830, USA.
| |
Collapse
|
4
|
BUCUR MP, RADULESCU MC, BUCUR B, RADU GL. Low-interferences Determination of the Antioxidant Capacity in Fruits Juices Based on Xanthine Oxidase and Mediated Amperometric Measurements in the Reduction Mode. ANAL SCI 2016; 32:135-40. [DOI: 10.2116/analsci.32.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Madalina-Petruta BUCUR
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences
| | | | - Bogdan BUCUR
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences
| | - Gabriel Lucian RADU
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences
| |
Collapse
|
5
|
Liu X, Dumitrescu E, Andreescu S. Electrochemical Biosensors for Real-Time Monitoring of Reactive Oxygen and Nitrogen Species. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1200.ch013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaobo Liu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810
| | - Eduard Dumitrescu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810
| | - Silvana Andreescu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810
| |
Collapse
|
6
|
Hernandez K, Fernandez-Lafuente R. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 2010; 48:107-22. [PMID: 22112819 DOI: 10.1016/j.enzmictec.2010.10.003] [Citation(s) in RCA: 446] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/26/2010] [Accepted: 10/13/2010] [Indexed: 02/04/2023]
Abstract
Mutagenesis and immobilization are usually considered to be unrelated techniques with potential applications to improve protein properties. However, there are several reports showing that the use of site-directed mutagenesis to improve enzyme properties directly, but also how enzymes are immobilized on a support, can be a powerful tool to improve the properties of immobilized biomolecules for use as biosensors or biocatalysts. Standard immobilizations are not fully random processes, but the protein orientation may be difficult to alter. Initially, most efforts using this idea were addressed towards controlling the orientation of the enzyme on the immobilization support, in many cases to facilitate electron transfer from the support to the enzyme in redox biosensors. Usually, Cys residues are used to directly immobilize the protein on a support that contains disulfide groups or that is made from gold. There are also some examples using His in the target areas of the protein and using supports modified with immobilized metal chelates and other tags (e.g., using immobilized antibodies). Furthermore, site-directed mutagenesis to control immobilization is useful for improving the activity, the stability and even the selectivity of the immobilized protein, for example, via site-directed rigidification of selected areas of the protein. Initially, only Cys and disulfide supports were employed, but other supports with higher potential to give multipoint covalent attachment are being employed (e.g., glyoxyl or epoxy-disulfide supports). The advances in support design and the deeper knowledge of the mechanisms of enzyme-support interactions have permitted exploration of the possibilities of the coupled use of site-directed mutagenesis and immobilization in a new way. This paper intends to review some of the advances and possibilities that these coupled strategies permit.
Collapse
Affiliation(s)
- Karel Hernandez
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
7
|
Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F. Cytochrome C mutants for superoxide biosensors. Anal Chem 2009; 81:2976-84. [PMID: 19296689 DOI: 10.1021/ac802571h] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of introducing positive charges (lysines) in human cytochrome c (cyt c) on the redox properties and reaction rates of cyt c with superoxide radicals was studied. The mutated forms of this electron-transfer protein are used as sensorial recognition elements for the amperometric detection of the reactive oxygen radical. The proteins were prepared by site-directed mutagenesis focusing on amino acids near the heme edge. The 11 mutants of human cyt c expressed in the course of this research have been characterized by UV-vis spectroscopy, circular dichroism, and NMR spectroscopy to verify overall structure integrity as well as axial coordination of the heme iron. The mutants are investigated voltammetrically using promoter-modified gold electrodes with respect to redox activity and formal redox potential. The rate constants for the reaction with superoxide have been determined spectrophotometrically. Four mutants show a higher reaction rate with the radical as compared to the wild type. These mutants are used for the construction of superoxide sensors based on thiol-modified gold electrodes and covalently fixed proteins. We found that the E66K mutant-based electrode has a clearly higher sensitivity in comparison with the wild-type-based sensor while retaining the high selectivity and showing a good storage stability.
Collapse
Affiliation(s)
- Franziska Wegerich
- Interfaces, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|