1
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
2
|
Thakkar S, Dumée LF, Gupta M, Singh BR, Yang W. Nano-Enabled sensors for detection of arsenic in water. WATER RESEARCH 2021; 188:116538. [PMID: 33125993 DOI: 10.1016/j.watres.2020.116538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 05/10/2023]
Abstract
The elevated cases of arsenic contamination reported across the globe have made its early detection and remediation an active area of research. Although, the World Health Organisation has set the maximum provisional value for arsenic in drinking water at 10 parts per billion, yet concentrations as high as 5000 parts per billion are still reported. In human beings, chronic arsenic exposure can culminate into lethal diseases such as cancer. Thus, there is a need for urgent emergence of efficient and reliable detection system. This paper offers an overview of the state-of-art knowledge on current arsenic detection mechanisms. The central agenda of this paper is to develop an understanding into the nano-enabled methods for arsenic detection with an emphasis on strategic fabrication of nanostructures and the modulation of nanomaterial chemistry in order to strengthen the knowledge into novel nano-enabled solutions for arsenic contamination. Towards the end prospects for arsenic detection in water are also prompted.
Collapse
Affiliation(s)
- Shalini Thakkar
- TERI-Deakin Nano biotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon - Faridabad Road, Gurugram, Haryana 122 001, India; Deakin University, Geelong, Faculty of Science, Engineering & Built Environment, Waurn Ponds, Victoria 3216, Australia.
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria 3216, Australia; Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Manish Gupta
- SGT College of Pharmacy, SGT University, Gurugram-Badli Road, Gurugram, Haryana 122505, India
| | - Braj Raj Singh
- TERI-Deakin Nano biotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon - Faridabad Road, Gurugram, Haryana 122 001, India
| | - Wenrong Yang
- Deakin University, Geelong, Faculty of Science, Engineering & Built Environment, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
3
|
Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116014] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R. A simple, portable, electrochemical biosensor to screen shellfish for Vibrio parahaemolyticus. AMB Express 2017; 7:41. [PMID: 28205102 PMCID: PMC5311015 DOI: 10.1186/s13568-017-0339-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10−8–2.0 × 10−13 M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
Collapse
|
5
|
Kempahanumakkagari S, Deep A, Kim KH, Kumar Kailasa S, Yoon HO. Nanomaterial-based electrochemical sensors for arsenic - A review. Biosens Bioelectron 2017; 95:106-116. [DOI: 10.1016/j.bios.2017.04.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/04/2023]
|
6
|
Nunez-Bajo E, Blanco-López MC, Costa-García A, Fernández-Abedul MT. Electrogeneration of Gold Nanoparticles on Porous-Carbon Paper-Based Electrodes and Application to Inorganic Arsenic Analysis in White Wines by Chronoamperometric Stripping. Anal Chem 2017; 89:6415-6423. [DOI: 10.1021/acs.analchem.7b00144] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Estefanía Nunez-Bajo
- Departamento de Química
Física y Analítica, Universidad de Oviedo, Asturias, Spain 33006
| | - M. Carmen Blanco-López
- Departamento de Química
Física y Analítica, Universidad de Oviedo, Asturias, Spain 33006
| | - Agustín Costa-García
- Departamento de Química
Física y Analítica, Universidad de Oviedo, Asturias, Spain 33006
| | | |
Collapse
|
7
|
Antonova S, Zakharova E. Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: A mini-review. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
8
|
Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R. Sensitive detection of multiple pathogens using a single DNA probe. Biosens Bioelectron 2016; 86:398-405. [PMID: 27414245 DOI: 10.1016/j.bios.2016.06.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP.
Collapse
Affiliation(s)
- Noordiana Nordin
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Son Radu
- Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Roozbeh Hushiarian
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia.
| |
Collapse
|
9
|
Barton J, García MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1651-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Touilloux R, Tercier-Waeber ML, Bakker E. Direct arsenic(iii) sensing by a renewable gold plated Ir-based microelectrode. Analyst 2015; 140:3526-34. [DOI: 10.1039/c5an00151j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A renewable gold-plated iridium-based microelectrode was developed, characterized and successfully applied to the direct voltammetric quantification of arsenite in freshwater samples.
Collapse
Affiliation(s)
- Romain Touilloux
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- 1211 Geneva 4
- Switzerland
| | - Mary-Lou Tercier-Waeber
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- 1211 Geneva 4
- Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- 1211 Geneva 4
- Switzerland
| |
Collapse
|
11
|
Cinti S, Politi S, Moscone D, Palleschi G, Arduini F. Stripping Analysis of As(III) by Means of Screen-Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite. ELECTROANAL 2014. [DOI: 10.1002/elan.201400041] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Sinha N. Nanomaterials-Based Solutions: Detection of arsenic in contaminated water. IEEE NANOTECHNOLOGY MAGAZINE 2014. [DOI: 10.1109/mnano.2014.2307371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Niu X, Lan M, Zhao H, Chen C, Li Y, Zhu X. Review: Electrochemical Stripping Analysis of Trace Heavy Metals Using Screen-Printed Electrodes. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.805416] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Kondo T, Horitani M, Sakamoto H, Shitanda I, Hoshi Y, Itagaki M, Yuasa M. Screen-printed Modified Diamond Electrode for Glucose Detection. CHEM LETT 2013. [DOI: 10.1246/cl.121242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| | - Masaru Horitani
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Hironori Sakamoto
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| | - Yoshinao Hoshi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
15
|
Lan Y, Luo H, Ren X, Wang Y, Wang L. Glassy Carbon Electrode Modified with Citrate Stabilized Gold Nanoparticles for Sensitive Arsenic (III) Detection. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.673108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2777] [Impact Index Per Article: 231.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Lan Y, Luo H, Ren X, Wang Y, Liu Y. Anodic stripping voltammetric determination of arsenic(III) using a glassy carbon electrode modified with gold-palladium bimetallic nanoparticles. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0827-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
|
19
|
Giacomino A, Abollino O, Lazzara M, Malandrino M, Mentasti E. Determination of As(III) by anodic stripping voltammetry using a lateral gold electrode: experimental conditions, electron transfer and monitoring of electrode surface. Talanta 2010; 83:1428-35. [PMID: 21238732 DOI: 10.1016/j.talanta.2010.11.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/28/2010] [Accepted: 11/14/2010] [Indexed: 11/29/2022]
Abstract
The aim of this work is to evaluate the efficiency of the determination of As(III) by anodic stripping voltammetry (ASV) using a lateral gold electrode and to study the modifications of the electrode surface during use. Potential waveforms (differential pulse and square wave), potential scan parameters, deposition time, deposition potential and surface cleaning procedure were examined for they effect on arsenic peak intensity and shape. The best responses were obtained with differential pulse potential wave form and diluted 0.25 M HCl as supporting electrolyte. The repeatability, linearity, accuracy and detection limit of the procedure and the interferences of cations and anions in solution were evaluated. The applicability of the procedure for As(III) determination in drinking waters was tested. Cyclic voltammetry (CV) was used to study the electrochemical behaviour of As(III) and for the daily monitoring of electrode surface. Also scanning electron microscopy (SEM) analysis was used to control the electron surface. Finally we evaluated the possibility to apply the equations valid for flow systems also to a stirred system, in order to calculate the number of electrons transferred per molecule during the stripping step.
Collapse
Affiliation(s)
- Agnese Giacomino
- Department of Analytical Chemistry, University of Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
20
|
Gibbon-Walsh K, Salaün P, van den Berg CM. Arsenic speciation in natural waters by cathodic stripping voltammetry. Anal Chim Acta 2010; 662:1-8. [DOI: 10.1016/j.aca.2009.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/16/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
|
21
|
Dungchai W, Chailapakul O, Henry CS. Electrochemical Detection for Paper-Based Microfluidics. Anal Chem 2009; 81:5821-6. [DOI: 10.1021/ac9007573] [Citation(s) in RCA: 914] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wijitar Dungchai
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand, Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872
| | - Orawon Chailapakul
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand, Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872
| | - Charles S. Henry
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand, Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872
| |
Collapse
|
22
|
Martínez-Paredes G, González-García M, Costa-García A. Lead Sensor Using Gold Nanostructured Screen-Printed Carbon Electrodes as Transducers. ELECTROANAL 2009. [DOI: 10.1002/elan.200804496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Sue JW, Ku HH, Chung HH, Zen JM. Disposable screen-printed ring disk carbon electrode coupled with wall-jet electrogenerated iodine for flow injection analysis of arsenic(III). Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Renedo OD, Alonso-Lomillo M, Martínez MA. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007; 73:202-19. [DOI: 10.1016/j.talanta.2007.03.050] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/14/2007] [Accepted: 03/23/2007] [Indexed: 11/29/2022]
|
25
|
Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 2007; 598:181-92. [PMID: 17719891 DOI: 10.1016/j.aca.2007.07.054] [Citation(s) in RCA: 413] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/16/2022]
Abstract
This review covers recent advances in synthesis and electrochemical applications of gold nanoparticles (AuNPs). Described approaches include the synthesis of AuNPs via designing and choosing new protecting ligands; and applications in electrochemistry of AuNPs including AuNPs-based bioelectrochemical sensors, such as direct electrochemistry of redox-proteins, genosensors and immunosensors, and AuNPs as enhancing platform for electrocatalysis and electrochemical sensors.
Collapse
Affiliation(s)
- Shaojun Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | | |
Collapse
|
26
|
Domínguez Renedo O, Arcos Martínez MJ. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Anal Chim Acta 2007; 589:255-60. [DOI: 10.1016/j.aca.2007.02.069] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/25/2022]
|