1
|
Syafira RS, Devi MJ, Gaffar S, Irkham, Kurnia I, Arnafia W, Einaga Y, Syakir N, Noviyanti AR, Hartati YW. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor. ACS APPLIED BIO MATERIALS 2024; 7:950-960. [PMID: 38303668 DOI: 10.1021/acsabm.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or coronavirus disease 2019 (COVID-19), is still spreading worldwide; therefore, the need for rapid and accurate detection methods remains relevant to maintain the spread of this infectious disease. Electrochemical immunosensors are an alternative method for the rapid detection of the SARS-CoV-2 virus. Herein, we report the development of a screen-printed carbon electrode immunosensor using a hydroxyapatite-gold nanocomposite (SPCE/HA-Au) directly spray-coated with the immobilization receptor binding domain (RBD) Spike to increase the conductivity and surface electrode area. The HA-Au composite synthesis was optimized using the Box-Behnken method, and the resulting composite was characterized by UV-vis spectrophotometry, TEM-EDX, and XRD analysis. The specific interaction of RBD Spike with immunoglobulin G (IgG) antibodies was evaluated by differential pulse voltammetry and electrochemical impedance spectroscopy methods in a [Fe(CN)6]4-/3- solution redox system. The IgG was detected with a detection limit of 0.0561 pg mL-1, and the immunosensor had selectivity and stability of 103-122% and was stable until week 7 with the influence of storage conditions. Also, the immunosensor was tested using real samples from human serum, where the results were confirmed using the chemiluminescent microparticle immunoassay (CMIA) method and showed satisfactory results. Therefore, the developed electrochemical immunosensor can rapidly and accurately detect SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Wyanda Arnafia
- Department of Animal Infectious Diseases and Veterinary Public Health, IPB University, Jl. Raya Dramaga, Bogor, West Java 16680, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Norman Syakir
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
2
|
Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN. Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and future perspectives. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Uca M, Eksin E, Erac Y, Erdem A. Electrochemical Investigation of Curcumin-DNA Interaction by Using Hydroxyapatite Nanoparticles-Ionic Liquids Based Composite Electrodes. MATERIALS 2021; 14:ma14154344. [PMID: 34361538 PMCID: PMC8347690 DOI: 10.3390/ma14154344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.
Collapse
Affiliation(s)
- Merve Uca
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Ece Eksin
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Yasemin Erac
- Pharmacology Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Arzum Erdem
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
- Correspondence: or
| |
Collapse
|
7
|
Zhang Q, Qiao Y, Zhang L, Wu S, Zhou H, Xu J, Song XM. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized on Water Soluble Sulfonated Graphene Film via Self-assembly. ELECTROANAL 2011. [DOI: 10.1002/elan.201000614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
He Y, Zheng J, Li K, Sheng Q, Qiao N. A Hydrogen Peroxide Biosensor Based on Room Temperature Ionic Liquid Functionalized Graphene Modified Carbon Ceramic Electrode. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Li S, Xia J, Liu C, Zheng Y, Zeng L, Hu J, Li Q. Direct electrochemistry and electrocatalysis of hemoglobin on an indium tin oxide electrode modified with implanted carboxy ions. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0197-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|