1
|
Ageykin N, Anisimkin V, Smirnov A, Fionov A, Li P, Qian Z, Ma T, Awasthi K, Kuznetsova I. An Electronic "Tongue" Based on Multimode Multidirectional Acoustic Plate Wave Propagation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6301. [PMID: 39409341 PMCID: PMC11478638 DOI: 10.3390/s24196301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
This paper theoretically and experimentally demonstrates the possibility of detecting the five basic tastes (salt, sweet, sour, umami, and bitter) using a variety of higher-order acoustic waves propagating in piezoelectric plates. Aqueous solutions of sodium chloride (NaCl), glucose (C6H12O6), citric acid (C6H8O7), monosodium glutamate (C5H8NO4Na), and sagebrush were used as chemicals for the simulation of each taste. These liquids differed from each other in terms of their physical properties such as density, viscosity, electrical conductivity, and permittivity. As a total acoustic response to the simultaneous action of all liquid parameters on all acoustic modes in a given frequency range, a change in the propagation losses (ΔS12) of the specified wave compared with distilled water was used. Based on experimental measurements, the corresponding orientation histograms of the ΔS12 were plotted for different types of acoustic waves. It was found that these histograms for different substances are individual and differ in shape, area, and position of their extremes. Theoretically, it has been shown that the influence of different liquids on different acoustic modes is due to both the electrical and mechanical properties of the liquids themselves and the mechanical polarization of the corresponding modes. Despite the fact that the mechanical properties of the used liquids are close to each other, the attenuation of different modes in their presence is not only due to the difference in their electrical parameters. The proposed approach to creating a multi-parametric multimode acoustic electronic tongue and obtaining a set of histograms for typical liquids will allow for the development of devices for the operational analysis of food, medicines, gasoline, aircraft fuel, and other liquid substances without the need for detailed chemical analysis.
Collapse
Affiliation(s)
- Nikita Ageykin
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia; (N.A.); (V.A.); (A.S.); (A.F.)
| | - Vladimir Anisimkin
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia; (N.A.); (V.A.); (A.S.); (A.F.)
| | - Andrey Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia; (N.A.); (V.A.); (A.S.); (A.F.)
| | - Alexander Fionov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia; (N.A.); (V.A.); (A.S.); (A.F.)
| | - Peng Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518063, China
| | - Zhenghua Qian
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518063, China
| | - Tingfeng Ma
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia; (N.A.); (V.A.); (A.S.); (A.F.)
| |
Collapse
|
2
|
Hui X, Asaduzzaman M, Zahed MA, Sharma S, Jeong S, Song H, Faruk O, Park JY. Multifunctional Siloxene-Decorated Laser-Inscribed Graphene Patch for Sweat Ion Analysis and Electrocardiogram Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9725-9735. [PMID: 38378454 DOI: 10.1021/acsami.3c16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Potentiometric detection in complex biological fluids enables continuous electrolyte monitoring for personal healthcare; however, the commercialization of ion-selective electrode-based devices has been limited by the rapid loss of potential stability caused by electrode surface inactivation and biofouling. Here, we describe a simple multifunctional hybrid patch incorporating an Au nanoparticle/siloxene-based solid contact (SC) supported by a substrate made of laser-inscribed graphene on poly(dimethylsiloxane) for the noninvasive detection of sweat Na+ and K+. These SC nanocomposites prevent the formation of a water layer during ion-to-electron transfer, preserving 3 and 5 μV/h potential drift for the Na+ and K+ ion-selective electrodes, respectively, after 13 h of exposure. The lamellar structure of the siloxene sheets increases the SC area. In addition, the electroplated Au nanoparticles, which have a large surface area and excellent conductivity, further increased the electric double-layer capacitance at the interface between the ion-selective membranes and solid-state contacts, thus facilitating ion-to-electron transduction and ultimately improving the detection stability of Na+ and K+. Furthermore, the integrated temperature and electrocardiogram sensors in the flexible patch assist in monitoring body temperature and electrocardiogram signals, respectively. Featuring both electrochemical ion-selective and physical sensors, this patch offers immense potential for the self-monitoring of health.
Collapse
Affiliation(s)
- Xue Hui
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Md Asaduzzaman
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - M Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - SeongHoon Jeong
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Omar Faruk
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- SnE Solution Co., Ltd, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
5
|
Potentiometric electronic tongues for foodstuff and biosample recognition--an overview. SENSORS 2011; 11:4688-701. [PMID: 22163870 PMCID: PMC3231407 DOI: 10.3390/s110504688] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 11/16/2022]
Abstract
Potentiometric sensors are attractive tools for the fabrication of various electronic tongues that can be used in wide area of applications, ranging from foodstuff recognition to environmental monitoring and medical diagnostics. Their main advantages are the ability to modify their selectivity (including cross-sensitivity effects) and the possibility of miniaturization using appropriate construction methods for the transducer part (e.g., with the use of solid-state technology). In this overview various examples of the design, performance, and applications of potentiometric electronic tongues are presented. The results summarize recent research in the field conducted in the Department of Microbioanalytics, Warsaw University of Technology (WUT).
Collapse
|
6
|
Witkowska E, Buczkowska A, Zamojska A, Szewczyk KW, Ciosek P. Monitoring of periodic anaerobic digestion with flow-through array of miniaturized ion-selective electrodes. Bioelectrochemistry 2010; 80:87-93. [PMID: 20851060 DOI: 10.1016/j.bioelechem.2010.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 08/12/2010] [Accepted: 08/23/2010] [Indexed: 11/25/2022]
Abstract
In the last few years Electronic tongues (ETs) based on various sensor arrays were applied to the monitoring of various fermentation processes, as devices capable of fast, inexpensive, automated and on-line control. In this work a novel application of ET is proposed--flow-through array of miniaturized ion-selective electrodes (ISEs) was used for the analysis of samples obtained during anaerobic digestion (methane fermentation) performed in periodic conditions. The samples were classified according to their Chemical Oxygen Demand (COD) and Volatile Fatty Acid (VFA) content. Moreover, for this application a novel design of ISEs was developed, which is fully compatible with flow-through modules for sensor measurements.
Collapse
Affiliation(s)
- Emilia Witkowska
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | | | | | |
Collapse
|