1
|
YAZAR AYDOĞAN S. Fabrication of Textile-Based Flexible Supercapacitor with a Textile Dye on Polyaniline-Based Composite Electrode for Enhanced Energy Storage. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1127200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Polyaniline (PANI) is a promising conductive polymer for use in energy storage applications. Here, a one-step hydrothermal method of PANI polymerization on carbon felt electrode was synthesized using an azo dye, a bisulfonated dichloro anionic dye molecule to enhance an efficient textile-based flexible supercapacitor electrode material for energy storage applications. The electrode material synthesized at concentration of 2 mM AY17 exhibits 814.1 F g-1 at the scan rate of 5 mV s-1 with multiwall carbon nanotubes (MWCNTs). Due to electrostatic interaction with the polymer, the presence of high electronegativity Cl atoms in the dye molecule significantly improves the PANI structure's electron donor/acceptor properties. A symmetric supercapacitor exhibits an energy density of 11.7 W h kg−1 at a power density of 300 W kg−1, and it is 4.5 W h kg−1 at 1800 W kg−1 in 3.0 M KCl aqueous electrolyte. The capacitance retention performance value of the symmetric supercapacitor exhibited 81.76% after 2500 cycles.
Collapse
|
2
|
Zhao P, Zhang H, Sun X, Hao S, Dong S. A hybrid bioelectrochemical device based on glucose/O2 enzymatic biofuel cell for energy conversion and storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Tsuruoka N, Soto SS, Tahar AB, Zebda A, Tsujimura S. Mediated electrochemical oxidation of glucose via poly(methylene green) grafted on the carbon surface catalyzed by flavin adenine dinucleotide-dependent glucose dehydrogenase. Colloids Surf B Biointerfaces 2020; 192:111065. [PMID: 32361503 DOI: 10.1016/j.colsurfb.2020.111065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
Abstract
Electrochemically polymerized phenothiazines (thionine, methylene green, methylene blue, and toluidine blue) on carbon electrodes were investigated as electron transfer mediators of glucose oxidation by flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) for biosensor and biofuel cell applications. Among the tested polyphenothiazines grafted on a glassy carbon electrode, clear redox-mediating activity was observed for poly(methylene green), and the catalytic oxidation current depended on the concentrations of glucose and enzymes and the amount of polymer deposited on the electrode surface. The poly(methylene green)-grafted porous carbon electrodes showed 3 mA cm-2 of glucose oxidation current catalyzed by FAD-GDH.
Collapse
Affiliation(s)
- Nozomu Tsuruoka
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| | - Silvia Sato Soto
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| | - Awatef Ben Tahar
- Université Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000, Grenoble, France
| | - Abdelkader Zebda
- Université Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000, Grenoble, France
| | - Seiya Tsujimura
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-5358, Japan.
| |
Collapse
|
4
|
Sun X, Zhang H, Hao S, Zhai J, Dong S. A Self-Powered Biosensor with a Flake Electrochromic Display for Electrochemical and Colorimetric Formaldehyde Detection. ACS Sens 2019; 4:2631-2637. [PMID: 31441298 DOI: 10.1021/acssensors.9b00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The formaldehyde biosensors with the features of cost effectiveness, high specificity, easy operation, and simplicity are urgently desired in routing and field detection of formaldehyde. Here, we report a new design of an enzymatic self-powered biosensor (ESPB) toward formaldehyde detection. The ESPB involves a formaldehyde dehydrogenase/poly-methylene green/buckypaper bioanode as the sensing electrode and a Prussian blue/Au nanoparticles/carbon fiber paper cathode as the electrochromic display. Formaldehyde acts as the fuel to drive the ESPB, relying on that the concentration of formaldehyde can be determined with the ESPB by both directly measuring the variance in short circuit current and observing the color change of the cathode. By measuring the variance in short circuit current, a linear detection range from 0.01 to 0.35 mM and a calculated detection limit of 0.006 mM are obtained, comparable to or better than those reported before. The color change of the cathode can be distinguished easily and exactly via the naked eye after immersing the ESPB in formaldehyde solution for 90 s with the concentration up to 0.35 mM, covering the permissive level of formaldehyde in some standards associated with environmental quality control. Specially, the formaldehyde concentration can be precisely quantified by analyzing the color change of the cathode digitally using the equation of B/(R + G + B). In the following test of real spiked samples of tap water and lake water, the recovery ratios of formaldehyde with the concentrations from 0.010 to 0.045 mM are tested to be between 95 and 100% by both measuring the variance in short circuit current and analyzing the color change of the cathode digitally. In addition, the ESPB exhibits negligible interference from acetaldehyde and ethanol and can be stored at 4 °C for 21 days with a loss of less than 8% in its initial value of short circuit current. Therefore, the ESPB with the capability of working like disposable test paper can be expected as a sensitive, simple, rapid, cost-effective colorimetric method with high selectivity in routing and field formaldehyde detection.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Scanning electrochemical microscopy imaging of poly (3,4-ethylendioxythiophene)/thionine electrodes for lactate detection via NADH electrocatalysis. Biosens Bioelectron 2019; 137:15-24. [PMID: 31077986 DOI: 10.1016/j.bios.2019.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/21/2019] [Indexed: 11/21/2022]
Abstract
Herein we report the use of scanning electrochemical microscopy (SECM) together with electrochemical and spectroscopic techniques to develop and characterise a stable and uniformly reactive chemically modified platinum electrode for NADH electrocatalysis. In order to achieve this, a range of different approaches for thionine entrapment within an electropolymerised poly (3,4-ethylendioxythiophene) (PEDOT) film were evaluated using SECM imaging in the presence of NADH, demonstrating the uniformity of the reactive layer towards NADH oxidation. The effect of electrolyte type and time scale employed during PEDOT electropolymerisation was examined with respect to thionine loading and the resulting charge transport diffusion coefficient (DCT) estimated via chronoamperometry. These studies indicated a decrease in DCT as thionine loading increased within the PEDOT film, suggesting that charge transport was diffusion limited within the film. Additionally, thionine functionalised nanotubes were formed, providing a stable support for lactate dehydrogenase entrapment while lowering the rate of thionine leaching, determined via SECM imaging. This enabled lactate determination at Eapp = 0.0 V vs Ag/AgCl over the range 0.25-5 mM in the presence of 1 mM NAD+.
Collapse
|
6
|
N,S Co-Doped Carbon Nanofibers Derived from Bacterial Cellulose/Poly(Methylene blue) Hybrids: Efficient Electrocatalyst for Oxygen Reduction Reaction. Catalysts 2018. [DOI: 10.3390/catal8070269] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Carucci C, Salis A, Magner E. Specific Ion Effects on the Mediated Oxidation of NADH. ChemElectroChem 2017. [DOI: 10.1002/celc.201700672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina Carucci
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, Bernal Institute; University of Limerick; Limerick Ireland
| | - Andrea Salis
- Department of Chemical and Geological Sciences; University of Cagliari; Cittadella Universitaria, SS 554 bivio Sestu 09042 Monserrato (CA) Italy
| | - Edmond Magner
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, Bernal Institute; University of Limerick; Limerick Ireland
| |
Collapse
|
8
|
Hydrogen sulfide detection by poly(methylene blue) modified highly oriented pyrolytic graphite electrode. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Urbanová V, Karlický F, Matěj A, Šembera F, Janoušek Z, Perman JA, Ranc V, Čépe K, Michl J, Otyepka M, Zbořil R. Fluorinated graphenes as advanced biosensors - effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. NANOSCALE 2016; 8:12134-12142. [PMID: 26879645 DOI: 10.1039/c6nr00353b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.
Collapse
Affiliation(s)
- Veronika Urbanová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - František Karlický
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Adam Matěj
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Filip Šembera
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague 6, Czech Republic
| | - Zbyněk Janoušek
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague 6, Czech Republic
| | - Jason A Perman
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Václav Ranc
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague 6, Czech Republic and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80301, USA
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Topçu E, Dağcı K, Alanyalıoğlu M. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. ELECTROANAL 2016. [DOI: 10.1002/elan.201600108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ezgi Topçu
- Atatürk University, Sciences Faculty; Department of Chemistry; 25240 Erzurum Turkey
| | - Kader Dağcı
- Atatürk University, Sciences Faculty; Department of Chemistry; 25240 Erzurum Turkey
| | - Murat Alanyalıoğlu
- Atatürk University, Sciences Faculty; Department of Chemistry; 25240 Erzurum Turkey
| |
Collapse
|
11
|
Dağcı K, Alanyalıoğlu M. Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2713-2722. [PMID: 26757200 DOI: 10.1021/acsami.5b10973] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A flexible and free-standing graphene-based hybrid paper was successfully fabricated by successive applications of vacuum filtration and electropolymerization. First, a suspension including graphene oxide (GO) and silver nanoparticles (AgNPs) was prepared, and GO/AgNPs paper was obtained by vacuum-filtration of this suspension through a membrane. This GO/AgNPs paper was transformed to rGO/AgNPs paper by using both chemical reduction with HI and thermal annealing procedures. rGO/AgNPs/poly(PyY) hybrid paper electrode was formed by electropolymerization of Pyronin Y (PyY) on rGO/AgNPs paper electrode from a PyY monomer-containing (pH 1.0) solution. Structural, chemical, and morphological characterization of this hybrid paper was carried out by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, infrared spectroscopy, UV-vis absorption spectroscopy, four-point probe conductivity measurement, and cyclic voltammetry techniques. Electrooxidation of nitrite on rGO/AgNPs/poly(PyY) hybrid paper electrode has been achieved at 860 mV with a linear range of 0.1-1000 μM, sensitivity of 13.5 μAμM(-1)cm(-2), and a detection limit of 0.012 μM. Amperometry studies have shown that the hybrid paper electrode is suitable for amperometric determination of nitrite in both standard laboratory samples and real samples. Moreover, this paper electrode selectively detects nitrite even in the presence of 100-fold common ions and exhibits an excellent operational stability and good flexibility.
Collapse
Affiliation(s)
- Kader Dağcı
- Atatürk University , Sciences Faculty, Department of Chemistry, 25240 Erzurum, Turkey
| | - Murat Alanyalıoğlu
- Atatürk University , Sciences Faculty, Department of Chemistry, 25240 Erzurum, Turkey
| |
Collapse
|
12
|
Ng SR, Pang H, Chen P, Li CM, O'Hare D. A Novel Electroactive Polymer for pH-independent Oxygen Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Phenothiazines grafted on the electrode surface from diazonium salts as molecular layers for photochemical generation of singlet oxygen. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. ARAB J CHEM 2015. [DOI: 10.1016/j.arabjc.2013.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Zaharie-Butucel D, Papp J, Leordean C, Anghel SD. Differently ordered carbonaceous structures synthesized by bubbled Ar or He plasmas inside methylene blue solutions with contrasting Escherichia coli growth inhibition effects. RSC Adv 2015. [DOI: 10.1039/c5ra17779k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A straightforward carbonaceous structure synthesis from methylene blue aided by Ar/He plasmas with different ordering and E. coli inhibition effects.
Collapse
Affiliation(s)
| | - J. Papp
- Babes-Bolyai University
- Cluj-Napoca
- Romania
| | - C. Leordean
- Interdisciplinary Research Institute in Bio-Nano-Sciences
- Cluj-Napoca
- Romania
| | | |
Collapse
|
16
|
Emre FB, Lopes P, Ferapontova EE. Implications of FAD Electrode Reaction Kinetics for Electrocatalysis of NADH Oxidation and Development of NAD-Dependent Enzyme Electrodes. ELECTROANAL 2014. [DOI: 10.1002/elan.201400048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Li H, Li R, Worden RM, Barton SC. Facilitation of high-rate NADH electrocatalysis using electrochemically activated carbon materials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6687-6696. [PMID: 24780505 DOI: 10.1021/am500087a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrochemical activation of glassy carbon, carbon paper and functionalized carbon nanotubes via high-applied-potential cyclic voltammetry leads to the formation of adsorbed, redox active functional groups and increased active surface area. Electrochemically activated carbon electrodes display enhanced activity toward nicotinamide adenine dinucleotide (NADH) oxidation, and more importantly, dramatically improved adsorption of bioelectrochemically active azine dyes. Adsorption of methylene green on an electroactivated carbon electrode yields a catalyst layer that is 1.8-fold more active toward NADH oxidation than an electrode prepared using electropolymerized methylene green. Stability studies using cyclic voltammetry indicate 70% activity retention after 4000 cycles. This work further facilitates the electrocatalysis of NADH oxidation for bioconversion, biosensor and bioenergy processes.
Collapse
Affiliation(s)
- Hanzi Li
- Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
18
|
Gomes SP, Doležalová J, Araújo AN, Couto CMCM, Montenegro MCBSM. Glutamate sol-gel amperometric biosensor based on co-immobilised NADP+ and glutamate dehydrogenase. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813090049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
X-Ray Photoelectron Spectroscopy for Characterization of Bionanocomposite Functional Materials for Energy-Harvesting Technologies. Chemphyschem 2013; 14:2071-80. [DOI: 10.1002/cphc.201300037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/12/2013] [Indexed: 11/07/2022]
|
20
|
Sosna M, Bonamore A, Gorton L, Boffi A, Ferapontova EE. Direct electrochemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphite electrodes. Biosens Bioelectron 2012. [PMID: 23208089 DOI: 10.1016/j.bios.2012.10.094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Escherichia coli flavohemoglobin (HMP), which contains one heme and one FAD as prosthetic groups and is capable of reducing O₂ by its heme at the expense of NADH oxidized at its FAD site, was electrochemically studied at graphite (Gr) electrodes. Two signals were observed in voltammograms of HMP adsorbed on Gr, at -477 and -171 mV vs. Ag|AgCl, at pH 7.4, correlating with electrochemical responses from the FAD and heme domains, respectively. The electron transfer rate constant for ET reaction between FAD of HMP and the electrode was estimated to be 83 s⁻¹. Direct bioelectrocatalytic oxidation of NADH by HMP was not observed, presumably due to impeded substrate access to HMP orientated on Gr through the FAD-domain and/or partial denaturation of HMP. Bioelectrocatalysis was achieved when HMP was wired to Gr by the Os redox polymers, with the onset of NADH oxidation at the formal potential of the particular Os complex (+140 mV or -195 mV). Apparent Michaelis constants K(M)(app) and j(max) were determined, showing bioelectrocatalytic efficiency of NADH oxidation by HMP exceeding the one earlier shown with diaphorase, which makes HMP very attractive as a component of bioanalytical and bioenergetic devices.
Collapse
Affiliation(s)
- Maciej Sosna
- Interdisciplinary Nanoscience Center-iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
21
|
Li H, Worley KE, Calabrese Barton S. Quantitative Analysis of Bioactive NAD+ Regenerated by NADH Electro-oxidation. ACS Catal 2012. [DOI: 10.1021/cs3004598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanzi Li
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824,
United States
| | - Kathryn E Worley
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824,
United States
| | - Scott Calabrese Barton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824,
United States
| |
Collapse
|
22
|
Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Pelster LN, Meredith MT, Minteer SD. Nicotinamide Adenine Dinucleotide Oxidation Studies at Multiwalled Carbon Nanotube/Polymer Composite Modified Glassy Carbon Electrodes. ELECTROANAL 2012. [DOI: 10.1002/elan.201200045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Li H, Wen H, Calabrese Barton S. NADH Oxidation Catalyzed by Electropolymerized Azines on Carbon Nanotube Modified Electrodes. ELECTROANAL 2012. [DOI: 10.1002/elan.201100573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Campbell E, Meredith M, Minteer SD, Banta S. Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun (Camb) 2012; 48:1898-900. [PMID: 22227738 DOI: 10.1039/c2cc16156g] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of immobilized enzyme systems is often limited by cofactor diffusion and regeneration. Here, we demonstrate an engineered enzyme capable of utilizing the minimal cofactor nicotinamide mononucleotide (NMN(+)) to address these limitations. Significant gains in performance are observed with NMN(+) in immobilized systems, despite a decreased turnover rate with the minimal cofactor.
Collapse
Affiliation(s)
- Elliot Campbell
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY 10027, USA
| | | | | | | |
Collapse
|
26
|
Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin). Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0701-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Narváez Villarrubia CW, Rincón RA, Radhakrishnan VK, Davis V, Atanassov P. Methylene green electrodeposited on SWNTs-based "bucky" papers for NADH and l-malate oxidation. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2402-2409. [PMID: 21667995 DOI: 10.1021/am2003137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This research introduces a cavity anode design based on new single-walled nanotube (SWNTs) papers, "bucky" papers, used for the oxidation (and regeneration) of nicotinamide adenine dinucleotide (NADH) and the oxidation of l-malate. The materials designed are paper-like processed composites containing also additives: BP11 sample contains SWNTs and isopropanol (IPA); the BPMG sample contains SWNTs, IPA, and methylene green (MG). NADH/NAD(+) is the cofactor responsible for the oxidation of l-malate by malate dehydrogenase (MDH), in the Krebs' cycle. Because of the high overpotential of NADH oxidation, poly methylene green (PMG) was utilized as the electrocatalyst to produce NAD(+). The electrocatalyst was deposited on the surface of the "bucky" papers by electropolymerization by means of 10 voltammetric cycles in a range of -0.5 V and +1.3 V (vs Ag/AgCl reference electrode) at a scan rate of 5 mV/s. The catalytic performance of PMG was evaluated by chronoamperometric measurements of NADH oxidation at 0.3 V in phosphate buffer and l-malate oxidation at 0.1 V in the presence of MDH. For both "bucky" papers, the chronoamperometric curves of PMG, current vs NADH concentration, show a linear relationship demonstrating to have a first order Fick's law behavior for concentrations of NADH lower than 6 mM. The chronoamperometric curves in the presence of MDH, current against l-malate concentration, show a Michaelis-Menten behavior where no inhibition or competitive reaction are detected. Additionally, the anodic materials were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the polymerization of MG is effectively observed in the form of particles nucleation. The anodes show an excellent electrocatalytic activity toward NADH oxidation. The electrode design is feasible, reproducible, and overall stable.
Collapse
Affiliation(s)
- Claudia W Narváez Villarrubia
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | | | | | | | | |
Collapse
|
28
|
Rincón RA, Lau C, Garcia KE, Atanassov P. Flow-through 3D biofuel cell anode for NAD+-dependent enzymes. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2010.11.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Arechederra MN, Jenkins C, Rincón RA, Artyushkova K, Atanassov P, Minteer SD. Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Melnikov D, Strack G, Zhou J, Windmiller JR, Halámek J, Bocharova V, Chuang MC, Santhosh P, Privman V, Wang J, Katz E. Enzymatic AND Logic Gates Operated Under Conditions Characteristic of Biomedical Applications. J Phys Chem B 2010; 114:12166-74. [DOI: 10.1021/jp105912e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitriy Melnikov
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Guinevere Strack
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Jian Zhou
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Joshua Ray Windmiller
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Jan Halámek
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Vera Bocharova
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Min-Chieh Chuang
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Padmanabhan Santhosh
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Vladimir Privman
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Joseph Wang
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| | - Evgeny Katz
- Department of Physics, Clarkson University, Potsdam, New York 13676, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676, and Department of NanoEngineering, University of California−San Diego, La Jolla, California 92093
| |
Collapse
|