1
|
Li M, He P, Yu Z, Zhang S, Gu C, Nie X, Gu Y, Zhang X, Zhu Z, Shao Y. Investigation of Dendrimer Transfer Behaviors at the Micro-Water/1,2-Dichloroethane Interface Facilitated by Dibenzo-18-Crown-6. Anal Chem 2021; 93:1515-1522. [PMID: 33356146 DOI: 10.1021/acs.analchem.0c03815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trans-interfacial behaviors of multiple ionic species at the interface between two immiscible electrolyte solutions (ITIES) are of importance to biomembrane mimicking, chemical and biosensing, and interfacial molecular catalysis. Utilizing host-guest interaction to facilitate ion transfer is an effective and commonly used method to decrease the Gibbs energy of transfer of a target molecule. Herein, we investigated a facilitated ion transfer (FIT) process of poly(amidoamine)dendrimer (PAMAM, G0-G2) by dibenzo-18-crown-6 (DB18C6) at the microinterfaces between water and 1,2-dichloroethane (μ-W/DCE). Because of the host-guest interaction between a dendrimer and a ligand, negative shifts of the transfer potentials were observed using cyclic voltammetry or Osteryoung square wave voltammetry. From the FIT behavior of the dendrimer, we revealed that each DB18C6 could selectively coordinate with one amino group. We first evaluated the protonated status of the intermediate state (1:2) exactly under the conditions the dendrimer (G1) transfers across the interface using the electrochemical mass spectrometry (EC-MS)-hyphenated technique, which is much smaller than the protonated status in the water phase (1:8 to 14). Using the same methodology, we also studied the facilitated transfer behaviors of G0 and G2. Based on these results, we put forward the mechanism of the FIT process, which might involve a deprotonating process at the interface for higher-generation dendrimers.
Collapse
Affiliation(s)
- Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaxiong Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Poltorak L, Sudhölter EJ, de Smet LC. Effect of charge of quaternary ammonium cations on lipophilicity and electroanalytical parameters: Task for ion transfer voltammetry. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Xie L, Huang X, Lin X, Su B. Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: Trans-membrane resistance and ion transfer reactions. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Lee HJ, Arrigan DWM, Karim MN, Kim H. Amperometric Ion Sensing Approaches at Liquid/Liquid Interfaces for Inorganic, Organic and Biological Ions. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) has become an invaluable tool for the selective and sensitive detection of cationic and anionic species, including charged drug molecules and proteins. In addition, neutral molecules can also be detected at the ITIES via enzymatic reactions. This chapter highlights recent developments towards creating a wide spectrum of sensing platforms involving ion transfer across the ITIES. As well as outlining the basic principles needed for performing these sensing applications, the development of ITIES-based detection strategies for inorganic, organic, and biological ions is discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu-city 702-701 Republic of Korea
| | - Damien W. M. Arrigan
- Nanochemistry Research Institute, Department of Chemistry, Curtin University GPO Box U1987 Perth, Western Australia 6845 Australia
| | - Md. Nurul Karim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu-city 702-701 Republic of Korea
| | - Hyerim Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu-city 702-701 Republic of Korea
| |
Collapse
|
5
|
Kim HR, Pereira CM, Han HY, Lee HJ. Voltammetric Studies of Topotecan Transfer Across Liquid/Liquid Interfaces and Sensing Applications. Anal Chem 2015; 87:5356-62. [DOI: 10.1021/acs.analchem.5b00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hye Rim Kim
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| | - Carlos M. Pereira
- Centro
de Investigação em Química−UP, L4, Departamento
de Química e Bioquímica da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Hye Youn Han
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| | - Hye Jin Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| |
Collapse
|
6
|
Poltorak L, Herzog G, Walcarius A. Electrochemically assisted generation of silica deposits using a surfactant template at liquid/liquid microinterfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11453-63. [PMID: 25229369 DOI: 10.1021/la501938g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The electrochemically assisted generation of mesoporous silica deposits at arrays of microscopic liquid/liquid interfaces was investigated. Ion transfer voltammetry was used in order to initiate the formation of silica material by electrochemical transfer of template species (cetyltrimethylammonium, CTA(+)), initially present in the organic phase, to the aqueous phase containing the hydrolyzed silica precursors (tetraethoxysilane, TEOS). The deposition mechanism was investigated using cyclic voltammetry, based on the analysis of diffusion layer profiles of CTA(+) species from the organic side of the interface. The morphology of the deposits varied from hemispherical to almost flat with the potential scan rate, the spacing factor of the microinterfaces array supporting the liquid/liquid interfaces, or the initial CTA(+) and TEOS concentrations, as evidenced by scanning electron microscopy and profilometry analyses. The amount of deposited material can be related to the amount of CTA(+) species passing across the liquid/liquid interfaces. Confocal Raman spectroscopy was used to confirm the presence of surfactant-templated silica deposits and to analyze the effectiveness of calcination in removing the organic molecules filling the interior of the pores. After template removal, the mesoporous network became accessible to external reagents, as checked by interfacial alkylammonium cation transfer, suggesting a possible analytical interest of such modified micro-liquid/liquid interfaces.
Collapse
Affiliation(s)
- Lukasz Poltorak
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | | | | |
Collapse
|
7
|
Host-guest complexes of calix[4]tubes--prediction of ion selectivity by quantum chemical calculations VI. J Mol Model 2014; 20:2200. [PMID: 24715047 DOI: 10.1007/s00894-014-2200-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
The selectivity of the bis(calix[4]arene)tetraethylene abbreviated as calix[4]tube for the endohedral complexation of alkali and alkaline earth metal ions, was predicted on the basis of structures and complex formation energies computed with three different quantum chemical methods: DFT LANL2DZp)/LANL2DZp), PM3/SPASS, and PM6. A comparison with published X-ray structures demonstrated that the most reliable results were achieved applying DFT calculations. The complexation of K⁺ and Ba²⁺ is most favorable, followed by the encapsulation of Rb⁺ and Sr²⁺, respectively. The flexibility of the tube, described by the torsion angles associated with the ethylene linkages between the calix[4]arene units and phenyl rings intersecting the plane of the four methylene carbon atoms, also makes an important contribution to its selectivity. In general, the cavity size is similar to [2.2.2] and [N2N2N2], the cryptands with the largest cavities previously studied in our group applying a similar protocol.
Collapse
|
8
|
Facilitated Ion Transfers at the Micro-Water/1,2-Dichloroethane Interface by Crown Ether Derivatives. ELECTROANAL 2013. [DOI: 10.1002/elan.201200549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Kaykal F, Bingol H, Sariguney AB, Coskun A, Akgemci EG. Synthesis and electrochemical properties of a novel calix[4]arene derivative for facilitated transfer of alkali metal ions across water/1,2-dichloroethane micro-interface. Supramol Chem 2011. [DOI: 10.1080/10610278.2011.575466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Voltammetric characterization of selective potassium ion transfer across micro-water/1,2-dichloroethane interface facilitated by a novel calix[4]arene derivative. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Selective sodium ion transfer across a water/1,2-dichloroethane micro-interface by a calix[4]arene derivative. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|