1
|
Kaur R, Rana S, Kaur R, Jyoti, Kaur N, Singh B. Bio-mimetic selectivity in Hg 2+ sensing developed via electro-copolymerized PEDOT and benzothiazole-Au nanoparticles composite. Mikrochim Acta 2023; 190:396. [PMID: 37715841 DOI: 10.1007/s00604-023-05972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023]
Abstract
To eliminate the potential health risks of mercury, development of stable and selective mercury sensor with high sensitivity is the need of the hour. To address this, a novel PEDOT-AA-BTZ-Au-based Hg2+ selective, hybrid electrochemical sensor has been designed by following a simple protocol for electrode fabrication. The electrode was designed by carefully optimizing the onset oxidation potential of supramolecule 2-(anthracen-9-yl)benzo[d]thiazole (AA-BTZ) and conducting polymer poly-(3,4-ethylenedioxythiophene) (PEDOT), using copolymerization approach followed by dropcasting of gold nanoparticles (AuNPs). The designed electrode offered synergistic effects thus augmenting the electrical conductivity and adsorption capacity as depicted by its porous surface morphology. The highly sensitive analytical signal was generated by sulphur pockets present in AA-BTZ and PEDOT conducting framework. This is further complemented by the selectivity offered by the soft interactions between AuNPs and Hg2+ resulting in a low detection limit of 0.60 nM. The prepared system was further utilized for sensing Hg2+ ion in real systems including lake water and cosmetic samples. Low interference from other ions and better reproducibility further established the suitability of the designed transducer system for future on-site sensing.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India.
| | - Ranjeet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jyoti
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Bhupender Singh
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- Department of Chemistry, Pandit Neki Ram Sharma Government College Rohtak, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Pavithra KG, SundarRajan P, Kumar PS, Rangasamy G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. CHEMOSPHERE 2023; 312:137314. [PMID: 36410499 DOI: 10.1016/j.chemosphere.2022.137314] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mercury is considered a toxic pollutant harmful to our human health and the environment. Mercury is highly persistent, volatile and bioaccumulated and enters into the food chain, destroying our ecosystem. The levels of mercury in the water bodies as well as in the atmosphere are affected by anthropogenic and natural activities. In this review, the mercury species as well as the mercury contamination towards water, soil and air are discussed in detail. In addition to that, the sources of mercury and the mercury cycle in the aquatic system are also discussed. The determination of mercury with various methods such as with modified electrodes and nanomaterials was elaborated in brief. The treatment in the removal of mercury such as adsorption, electrooxidation and photocatalysis were explained with recent ideologies and among them, adsorption was considered one of the efficient techniques in terms of cost and mercury removal.
Collapse
Affiliation(s)
- K Grace Pavithra
- Department of Environmental and Water Resource Engineering, Saveetha School of Engineering, Chennai, 602 105, Tamil Nadu, India
| | - P SundarRajan
- Department of Chemical Engineering, Saveetha Engineering College, Chennai, 602 105, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR) Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
3
|
Kadir A, Jamal R, Abdiryim T, Sawut N, Che Y, Helil Z, Zhang H. Electrochemical sensor formed from poly(3,4-ethylenedioxyselenophene) and nitrogen-doped graphene composite for dopamine detection. RSC Adv 2021; 11:37544-37551. [PMID: 35496423 PMCID: PMC9043829 DOI: 10.1039/d1ra07024j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, an electrochemical sensor for dopamine (DA) detection has been developed by a composite of poly(3,4-ethylenedioxyselenophene) (PEDOS) and nitrogen-doped graphene (PEDOS/N-Gr) using an in situ polymerization method. Its structure and properties were then compared with those of the composites of poly(3,4-ethylenedioxythiophene) (PEDOT)/nitrogen-doped graphene (PEDOT/N-Gr), which were prepared by the same methods. FT-IR, Raman, UV-vis, XPS, mapping and SEM investigated the structure and morphology of these composites. These revealed that PEDOS/N-Gr had a higher conjugation degree than PEDOT/N-Gr. The synergetic effect between PEDOS and N-Gr was beneficial for the formation of a homogenous surface coating. The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were conducted for electrochemical detection of DA. Compared with PEDOT/N-Gr, the PEDOS/N-Gr displayed an enhanced sensitivity and electrocatalytic performance for DA detection with linear ranges of 0.008-80 μM (PEDOT/N-Gr: 0.04-70 μM) and limits of detection (LOD) of 0.0066 μM (S/N = 3) (PEDOT/N-Gr: 0.018 μM (S/N = 3)).
Collapse
Affiliation(s)
- Aygul Kadir
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
- Key Laboratory of Petroleum and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Ruxangul Jamal
- Key Laboratory of Petroleum and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Tursun Abdiryim
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Nurbiya Sawut
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Yuzhu Che
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Zulpikar Helil
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Hujun Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| |
Collapse
|
4
|
Electrochemical synthesis of multilayered PEDOT/PEDOT-SH/Au nanocomposites for electrochemical sensing of nitrite. Mikrochim Acta 2020; 187:248. [DOI: 10.1007/s00604-020-4211-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
|
5
|
Brainina K, Stozhko N, Bukharinova M, Vikulova E. Nanomaterials: Electrochemical Properties and Application in Sensors. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2018-8050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The unique properties of nanoparticles make them an extremely valuable modifying material, being used in electrochemical sensors. The features of nanoparticles affect the kinetics and thermodynamics of electrode processes of both nanoparticles and redox reactions occurring on their surface. The paper describes theoretical background and experimental studies of these processes. During the transition from macro- to micro- and nanostructures, the analytical characteristics of sensors modify. These features of metal nanoparticles are related to their size and energy effects, which affects the analytical characteristics of developed sensors. Modification of the macroelectrode with nanoparticles and other nanomaterials reduces the detection limit and improves the degree of sensitivity and selectivity of measurements. The use of nanoparticles as transducers, catalytic constituents, parts of electrochemical sensors for antioxidant detection, adsorbents, analyte transporters, and labels in electrochemical immunosensors and signal-generating elements is described.
Collapse
|
6
|
Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: A review. Anal Chim Acta 2018; 1022:1-19. [DOI: 10.1016/j.aca.2018.02.080] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
|
7
|
Gervais E, Aceta Y, Gros P, Evrard D. Study of an AuNPs functionalized electrode using different diazonium salts for the ultra-fast detection of Hg(II) traces in water. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Mao A, Li H, Cai Z, Hu X. Determination of mercury using a glassy carbon electrode modified with nano TiO2 and multi-walled carbon nanotubes composites dispersed in a novel cationic surfactant. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Abstract
Nanodendritic Pd electrodeposited on poly(3,4-ethylenedioxythiophene) coated carbon paper electrodes is studied for electroanalysis of As(iii).
Collapse
Affiliation(s)
- Sthitaprajna Dash
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore, India
| | - N. Munichandraiah
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore, India
| |
Collapse
|
11
|
Abstract
More and more heavy metal ions pollution events happen nowadays, so how to detect and remove heavy metal ions is a very important problem. Electrochemical method is relatively simple device, convenient automatic operation. Because of its high sensitivity and good selectivity, it becomes a good method to detect heavy metal ions. This paper summarized the detection of heavy metal ions by stripping voltammetry.
Collapse
|
12
|
Electrochemical determination of mercury: A review. Talanta 2013; 116:1091-104. [DOI: 10.1016/j.talanta.2013.07.056] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 11/20/2022]
|
13
|
|
14
|
Ding L, Zhai J, Bond AM, Zhang J. Polystyrenesulfonate doped poly(Hydroxymethyl 3,4-Ethylenedioxythiophene) stabilized Au nanoparticle modified glassy carbon electrode as a reusable sensor for mercury(II) detection in chloride media. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Guo Z, Wei Y, Yang R, Liu JH, Huang XJ. Hydroxylation/carbonylation carbonaceous microspheres: A route without the need for an external functionalization to a “hunter” of lead(II) for electrochemical detection. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.08.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zanardi C, Terzi F, Seeber R. Polythiophenes and polythiophene-based composites in amperometric sensing. Anal Bioanal Chem 2012; 405:509-31. [PMID: 22941065 DOI: 10.1007/s00216-012-6318-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 11/26/2022]
Abstract
This overview of polythiophene-based materials provides a critical examination of meaningful examples of applications of similar electrode materials in electroanalysis. The advantages arising from the use of polythiophene derivatives in such an applicative context is discussed by considering the organic conductive material as such, and as one of the components of hybrid materials. The rationale at the basis of the combination of two or even more individual components into a hybrid material is discussed with reference to the active electrode processes and the consequent possible improvements of the electroanalytical performance. In this respect, study cases are presented considering different analytes chosen among those that are most frequently reported within the classes of organics and inorganics. The use of a polythiophene matrix to stably fix biological elements at the electrode surface for the development of catalytic biosensors and genosensors is also discussed. Finally, a few possible lines along which the next research in the field could be fruitfully pursued are outlined. Furthermore, the work still to be done to exploit the possibilities offered by novel products of organic synthesis, even along paths already traced in other fields of electrochemistry, is discussed.
Collapse
Affiliation(s)
- C Zanardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio E, Modena, Italy
| | | | | |
Collapse
|
17
|
Wei Y, Yang R, Yu XY, Wang L, Liu JH, Huang XJ. Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers. Analyst 2012; 137:2183-91. [PMID: 22421740 DOI: 10.1039/c2an15939b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have demonstrated highly selective and sensitive detection of Pb(II) and Cd(II) using a highly selective adsorptive porous magnesium oxide (MgO) nanoflowers. The MgO nanoflower-modified glassy carbon electrode was electrochemically characterized using cyclic voltammetry; and the anodic stripping voltammetric performance of bound Pb(II) and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The MgO nanoflower-modified electrode exhibited excellent sensing performance toward Pb(II) and Cd(II) that was never observed previously at bismuth (Bi)-based electrodes. Simultaneous additions of Pb(II) and Cd(II) were investigated in the linear range from 3.3 to 22 nM for Pb(II) and 40 to 140 nM for Cd(II), and detection limits of 2.1 pM and 81 pM were obtained, respectively. Some foreign ions, such as Cu(II), Zn(II) and Cr(III) do not interfere with the detection of Pb(II) and Cd(II). To the best of our knowledge, this is the first example of a highly adsorptive metal oxide with hierarchical micro/nanostructure that allows the detection of both Pb(II) and Cd(II) ions.
Collapse
Affiliation(s)
- Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China
| | | | | | | | | | | |
Collapse
|