1
|
Park C, Hwang S, Kang Y, Sim J, Cho HU, Oh Y, Shin H, Kim DH, Blaha CD, Bennet KE, Lee KH, Jang DP. Feasibility of Applying Fourier Transform Electrochemical Impedance Spectroscopy in Fast Cyclic Square Wave Voltammetry for the In Vivo Measurement of Neurotransmitters. Anal Chem 2021; 93:15861-15869. [PMID: 34839667 DOI: 10.1021/acs.analchem.1c02308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the in vivo detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, all Rct, Rs, and Cdl voltammograms showed different DA redox patterns and linear trends for the DA concentration (R2 > 0.99). Furthermore, the Rct voltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally, Cdl from FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r = 0.986) and in vivo experiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.
Collapse
Affiliation(s)
- Cheonho Park
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmun Hwang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yumin Kang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States.,Division of Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Dilimon VS, Hwang C, Cho YG, Yang J, Lim HD, Kang K, Kang SJ, Song HK. Superoxide stability for reversible Na-O 2 electrochemistry. Sci Rep 2017; 7:17635. [PMID: 29247227 PMCID: PMC5732307 DOI: 10.1038/s41598-017-17745-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/27/2017] [Indexed: 11/09/2022] Open
Abstract
Stabilizing superoxide (O2-) is one of the key issues of sodium-air batteries because the superoxide-based discharge product (NaO2) is more reversibly oxidized to oxygen when compared with peroxide (O22-) and oxide (O2-). Reversibly outstanding performances of sodium-oxygen batteries have been realized with the superoxide discharge product (NaO2) even if sodium peroxide (Na2O2) have been also known as the discharge products. Here we report that the Lewis basicity of anions of sodium salts as well as solvent molecules, both quantitatively represented by donor numbers (DNs), determines the superoxide stability and resultantly the reversibility of sodium-oxygen batteries. A DN map of superoxide stability was presented as a selection guide of salt/solvent pair. Based on sodium triflate (CF3SO3-)/dimethyl sulfoxide (DMSO) as a high-DN-pair electrolyte system, sodium ion oxygen batteries were constructed. Pre-sodiated antimony (Sb) was used as an anode during discharge instead of sodium metal because DMSO is reacted with the metal. The superoxide stability supported by the high DN anion/solvent pair ([Formula: see text] -/DMSO) allowed more reversible operation of the sodium ion oxygen batteries.
Collapse
Affiliation(s)
- V S Dilimon
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Chihyun Hwang
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Yoon-Gyo Cho
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Juchan Yang
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hee-Dae Lim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea.
| |
Collapse
|
5
|
Nam KM, Shin DH, Jung N, Joo MG, Jeon S, Park SM, Chang BY. Development of Galvanostatic Fourier Transform Electrochemical Impedance Spectroscopy. Anal Chem 2013; 85:2246-52. [DOI: 10.1021/ac303108n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Namchul Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, San 31
Namgu Hyojadong, Pohang, Korea
| | | | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology, San 31
Namgu Hyojadong, Pohang, Korea
| | - Su-Moon Park
- Interdisciplinary School of
Green Energy, Ulsan National Institute of Science and Engineering, Ulsan 689-805, Korea
| | | |
Collapse
|