1
|
Özyurt VH, Avcı O, Tepeli-Büyüksünetci Y, Anık Ü. Bismuth film based electrochemical hydroxymethylfurfural sensor. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
2
|
Alnahdi HS, Mousa RMA, El‐Said WA. Development of Organochlorine Pesticide Electrochemical Sensor Based on Fe
3
O
4
Nanoparticles@indium Tin Oxide Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hanan S. Alnahdi
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Rasha Mousa Ahmed Mousa
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Waleed A. El‐Said
- University of Jeddah, College of Science, Department of Chemistry P.O. 80327 Jeddah 21589 Saudi Arabia
- Department of Chemistry Faculty of Science Assiut University Assiut 71516 Egypt
| |
Collapse
|
3
|
Prabhu K, Malode SJ, Shetti NP, Kulkarni RM. Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. CHEMOSPHERE 2022; 287:132086. [PMID: 34523434 DOI: 10.1016/j.chemosphere.2021.132086] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical performance of linuron (LNR) was studied by fabricating the carbon paste electrode (CPE) using multiwalled carbon nanotubes (MWCNTs) along with zinc oxide (ZnO) nanoparticles (MWCNTs/ZnO/CPE). The influence of electro-kinetic specifications involving steady heterogeneous rate, pH, sweep rate, temperature effect, transfer coefficient, accumulation time, activation energy, as well as the total number of protons and electrons participating in electro-oxidation of LNR has been established using voltammetric techniques like cyclic voltammetry (CV) and square wave voltammetry (SWV). These techniques were applied to investigate LNR in real samples such as soil including water samples. Over the 0.02 μM-0.34 μM ranges, a linear relationship was confirmed along with the limit of detection and quantification (LOD and LOQ) of the LNR. The synthesized ZnO nanoparticles were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) analysis. The MWCNTs/ZnO/CPE sensor was considered sensitive for LNR detection because the sensor exhibited enhanced catalytic qualities with peak current in the involvement of 0.2 M phosphate buffer solution (PBS) of pH 6.0, attributed to the ultimate sensing performance of the sensor.
Collapse
Affiliation(s)
- Keerthi Prabhu
- Centre for Electrochemical Science and Materials, Department of Engineering Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India
| | - Shweta J Malode
- Centre for Electrochemical Science and Materials, Department of Engineering Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Raviraj M Kulkarni
- Department of Chemistry, K. L. S. Gogte Institute of Technology (Autonomous), affiliated to Visvesvaraya Technological University Belagavi-590008, Karnataka, India
| |
Collapse
|
4
|
Che Lah NF, Ahmad AL, Low SC, Zaulkiflee ND. Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio. MEMBRANES 2021; 11:657. [PMID: 34564474 PMCID: PMC8468889 DOI: 10.3390/membranes11090657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects in living organisms. In this study, the influence of the porogen on the selectivity of MIPs was investigated. The porogen plays a pivotal role in molecular imprinting as it affects the physical properties and governs the prepolymerization complex of the resulting polymer, which in turn firmly defines the recognition properties of the resulting molecularly imprinted polymer (MIP). Therefore, bulk MIPs against atrazine (Atr) were synthesized based on methacrylic acid (MAA) as a functional monomer and ethyleneglycol dimethacrylate (EGDMA) as a crosslinker; they were prepared in toluene and dimethyl sulfoxide (DMSO). The imprinting factor, binding capacity, and structural stability were evaluated using the respective porogenic solvents. Along with the characterization of the morphology of the obtained polymers via SEM and BET analysis, the kinetic and adsorption analyses were demonstrated and verified. The highest imprinting factor, binding capacity, and the highest structural stability were found to be on polymer synthesized in a medium of MAA and EGDMA, which contained 90% toluene and 10% DMSO as porogen. Moreover, the response for Atr concentrations by the PVC-based electrochemical sensor was found to be at a detection limit of 0.0049 μM (S/N = 3). The sensor proved to be an effective sensor with high sensitivity and low Limit of Detection (LOD) for Atr detection. The construction of the sensor will act as a baseline for a fully functionalized membrane sensor.
Collapse
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.F.C.L.); (S.C.L.); (N.D.Z.)
| | | | | |
Collapse
|
5
|
Xiang H, Cai Q, Li Y, Zhang Z, Cao L, Li K, Yang H. Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters. JOURNAL OF SENSORS 2020; 2020:1-22. [DOI: 10.1155/2020/8503491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water is essential for every life living on the planet. However, we are facing a more serious situation such as water pollution since the industrial revolution. Fortunately, many efforts have been done to alleviate/restore water quality in freshwaters. Numerous sensors have been developed to monitor the dynamic change of water quality for ecological, early warning, and protection reasons. In the present review, we briefly introduced the pollution status of two major pollutants, i.e., pesticides and heavy metals, in freshwaters worldwide. Then, we collected data on the sensors applied to detect the two categories of pollutants in freshwaters. Special focuses were given on the sensitivity of sensors indicated by the limit of detection (LOD), sensor types, and applied waterbodies. Our results showed that most of the sensors can be applied for stream and river water. The average LOD was72.53±12.69 ng/ml (n=180) for all pesticides, which is significantly higher than that for heavy metals (65.36±47.51 ng/ml,n=117). However, the LODs of a considerable part of pesticides and heavy metal sensors were higher than the criterion maximum concentration for aquatic life or the maximum contaminant limit concentration for drinking water. For pesticide sensors, the average LODs did not differ among insecticides (63.83±17.42 ng/ml,n=87), herbicides (98.06±23.39 ng/ml,n=71), and fungicides (24.60±14.41 ng/ml,n=22). The LODs that differed among sensor types with biosensors had the highest sensitivity, while electrochemical optical and biooptical sensors showed the lowest sensitivity. The sensitivity of heavy metal sensors varied among heavy metals and sensor types. Most of the sensors were targeted on lead, cadmium, mercury, and copper using electrochemical methods. These results imply that future development of pesticides and heavy metal sensors should (1) enhance the sensitivity to meet the requirements for the protection of aquatic ecosystems and human health and (2) cover more diverse pesticides and heavy metals especially those toxic pollutants that are widely used and frequently been detected in freshwaters (e.g., glyphosate, fungicides, zinc, chromium, and arsenic).
Collapse
Affiliation(s)
- Hongyong Xiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuan Li
- Northwest Land and Resources Research Center, Shaanxi Normal Northwest University, China
| | - Zhenxing Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lina Cao
- Ecology and Environment Department of Jilin Province, Changchun, Jilin 130024, China
| | - Kun Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
| | - Haijun Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
- School of Life Science and Geology, Yili Normal University, Yili, Xinjiang 835000, China
| |
Collapse
|
6
|
Madianos L, Tsekenis G, Skotadis E, Patsiouras L, Tsoukalas D. A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens Bioelectron 2017; 101:268-274. [PMID: 29096365 DOI: 10.1016/j.bios.2017.10.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 10/15/2017] [Indexed: 12/15/2022]
Abstract
A novel impedimetric biosensor was developed for the detection of the two extensively used pesticides, acetamiprid and atrazine. By employing the sputtering and e-beam lithography techniques, platinum nanoparticles (Pt NPs) were deposited in a bridge-like arrangement, in between interdigitated electrodes (IDEs). The resulting Pt NP microwires were chemically functionalized to allow the covalent immobilization of aptamers against the two target analytes onto the sensor surfaces. The biosensing platform facilitated charge transfer through the microwire-bridged IDEs, while upon analyte binding to the immobilized aptamers electron transfer was hindered, resulting in an increase of the electrochemical cell's impedance. The combination of Pt NPs microwires and aptamers allowed the sensitive and highly selective detection of acetamiprid with a linear range of response in the range of 10pM to 100nM with a limit of detection (LoD) at 1pM, and of atrazine with a linear range of responses from 100pM to 1μM and a LoD at 10pM respectively. Its performance was tested against a number of other commonly used pesticides as well as in real water samples.
Collapse
Affiliation(s)
- L Madianos
- Department of Applied Physics, National Technical University of Athens, Athens 15780, Greece.
| | - G Tsekenis
- Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - E Skotadis
- Department of Applied Physics, National Technical University of Athens, Athens 15780, Greece
| | - L Patsiouras
- Department of Applied Physics, National Technical University of Athens, Athens 15780, Greece
| | - D Tsoukalas
- Department of Applied Physics, National Technical University of Athens, Athens 15780, Greece.
| |
Collapse
|
7
|
Stępniowska A, Sztanke M, Tuzimski T, Korolczuk M, Sztanke K. A simple stripping voltammetric method for the determination of a new anticancer prodrug in serum. Biosens Bioelectron 2017; 94:584-588. [PMID: 28364705 DOI: 10.1016/j.bios.2017.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
The determination of ethyl [4-oxo-8-(3-chlorophenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (ETTA), a new anticancer prodrug, using adsorptive stripping voltammetry (AdSV) was described for the first time. This method is based on adsorptive/reductive behaviour of ETTA at an in situ plated bismuth film electrode (BiFE) as a sensor. A number of experimental variables (e.g., a composition and pH of the supporting electrolyte, the conditions of bismuth film deposition, an accumulation potential and time, the scan rate, etc.) were thoroughly studied in order to achieve a high sensitivity. Experimental results under optimized conditions revealed an excellent linear correlation between the monitored voltammetric peak current and the ETTA concentration in the range of 2-50μgL-1 following an accumulation time of 300s. The limit of detection (LOD) for ETTA following 300s of an accumulation time was 0.4μgL-1. The proposed facile, sensitive and inexpensive method was successfully applied to the determination of ETTA in serum. The investigated prodrug was extracted from serum using SPE method.
Collapse
Affiliation(s)
- Anna Stępniowska
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, 13 Akademicka, 20-950 Lublin, Poland.
| | - Małgorzata Sztanke
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Tomasz Tuzimski
- Department of Physical Chemistry, Chair of Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Mieczysław Korolczuk
- Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Yola ML, Atar N. Electrochemical Detection of Atrazine by Platinum Nanoparticles/Carbon Nitride Nanotubes with Molecularly Imprinted Polymer. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01379] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehmet Lütfi Yola
- Iskenderun Technical University, Faculty of Engineering
and Natural Sciences, Department of Biomedical Engineering, Hatay, Turkey
| | - Necip Atar
- Pamukkale University, Faculty of Engineering, Department
of Chemical Engineering, Denizli, Turkey
| |
Collapse
|
9
|
Tseliou F, Avgeropoulos A, Falaras P, Prodromidis MI. Low dimensional Bi 2 Te 3 -graphene oxide hybrid film-modified electrodes for ultra-sensitive stripping voltammetric detection of Pb(II) and Cd(II). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Martin ET, McGuire CM, Mubarak MS, Peters DG. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem Rev 2016; 116:15198-15234. [DOI: 10.1021/acs.chemrev.6b00531] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erin T. Martin
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caitlyn M. McGuire
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Dennis G. Peters
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Štěpánková M, Šelešovská R, Janíková L, Chýlková J, Švancara I. Sensitive electrochemical sensor for the determination of folic acid based on a bismuth-film electrode. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1849-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Vladislavić N, Buzuk M, Brinić S, Buljac M, Bralić M. Morphological characterization of ex situ prepared bismuth film electrodes and their application in electroanalytical determination of the biomolecules. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3234-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Riman D, Avgeropoulos A, Hrbac J, Prodromidis MI. Sparked-bismuth oxide screen-printed electrodes for the determination of riboflavin in the sub-nanomolar range in non-deoxygenated solutions. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
A thermostated electrochemical flow cell with a coupled bismuth film electrode for square-wave anodic stripping voltammetric determination of cadmium(II) and lead(II) in natural, wastewater and tap water samples. Talanta 2014; 126:82-90. [DOI: 10.1016/j.talanta.2014.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022]
|
15
|
|
16
|
Caballero-Díaz E, Simonet B, Valcárcel M. Liquid–liquid extraction assisted by a carbon nanoparticles interface. Electrophoretic determination of atrazine in environmental samples. Analyst 2013; 138:5913-9. [DOI: 10.1039/c3an00439b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|