Naseer R, Ali B, Laffir F, Kailas L, Dickinson C, Armstrong G, McCormac T. Transition Metal-Substituted Krebs-Type Polyoxometalate-Doped PEDOT Films.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019;
35:11007-11015. [PMID:
30892897 DOI:
10.1021/acs.langmuir.8b03785]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The transition metal-substituted Krebs-type polyoxometalates (POMs) [Sb2W20M2O70(H2O)6]n-, M = Fe(III), Co(II), or Cu(II), were surface immobilized within the conducting polymer 3,4-ethylenedioxythiophene (PEDOT) on glassy carbon electrode surfaces. The immobilized films of different thicknesses were characterized by electrochemical and surface-based techniques. The inherent redox activity for the Krebs-type POMs, [Sb2W20M2O70(H2O)6]n-, M = Fe(III), Co(II), or Cu(II), that were observed in the solution phase were maintained in the polymeric PEDOT matrix. The resulting films were found to be extremely stable toward redox switching between the various POM-based redox states. The films exhibited pH-dependent redox activity and thin layer behavior up to 100 mV s-1. The films were found to be highly conductive through the employment of electrochemical impedance spectroscopy. Surface characterization of the films was carried out by X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy graph.
Collapse