1
|
Electrochemical Biosensor Designed to Distinguish Tetracyclines Derivatives by ssDNA Aptamer Labelled with Ferrocene. Int J Mol Sci 2022; 23:ijms232213785. [PMID: 36430261 PMCID: PMC9698302 DOI: 10.3390/ijms232213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Controlling food safety and preventing the growing spread of antibiotics into food products have been challenging problems for the protection of human health. Hence, the development of easy-to-use, fast, and sensitive analytical methods for the detection of antibiotics in food products has become one of the priorities in the food industry. In this paper, an electrochemical platform based on the ssDNA aptamer for the selective detection of tetracycline has been proposed. The aptasensor is based on a thiolated aptamer, labelled with ferrocene, which has been covalently co-immobilized onto a gold electrode surface with 6-mercaptohexan-1-ol. The changes in the redox activity of ferrocene observed on the aptamer-antibiotics interactions have been the basis of analytical signal generation registered by square-wave voltammetry. Furthermore, the detection of tetracycline-spiked cow milk samples has been successfully demonstrated. The limits of detection (LODs) have been obtained of 0.16 nM and 0.20 nM in the buffer and spiked cow milk, respectively, which exceed the maximum residue level (225 nM) more than 1000 times. The proposed aptasensor offers high selectivity for tetracycline against other structurally related tetracycline derivatives. The developed biosensor characterized by simplicity, a low detection limit, and high reliability shows practical potential for the detection of tetracycline in animal-origin milk.
Collapse
|
2
|
Marti A, Huskens J. Au Nanoparticle-Based Amplified DNA Detection on Poly-l-lysine Monolayer-Functionalized Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:242. [PMID: 35055260 PMCID: PMC8780787 DOI: 10.3390/nano12020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Affinity sensing of nucleic acids is among the most investigated areas in biosensing due to the growing importance of DNA diagnostics in healthcare research and clinical applications. Here, we report a simple electrochemical DNA detection layer, based on poly-l-lysine (PLL), in combination with gold nanoparticles (AuNPs) as a signal amplifier. The layer shows excellent reduction of non-specific binding and thereby high contrast between amplified and non-amplified signals with functionalized AuNPs; the relative change in current was 10-fold compared to the non-amplified signal. The present work may provide a general method for the detection of tumor markers based on electrochemical DNA sensing.
Collapse
Affiliation(s)
| | - Jurriaan Huskens
- Department of Molecules & Materials, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| |
Collapse
|
3
|
Rudewicz-Kowalczyk D, Grabowska I. Detection of Low Density Lipoprotein-Comparison of Electrochemical Immuno- and Aptasensor. SENSORS 2021; 21:s21227733. [PMID: 34833808 PMCID: PMC8620298 DOI: 10.3390/s21227733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
An elevated level of low density lipoprotein (LDL) can lead to the cardiovascular system-related diseases, such as atherosclerosis and others. Therefore, fast, simple, and accurate methods for LDL detection are very desirable. In this work, the parameters characterizing the electrochemical immuno-and aptasensor for detection of LDL have been compared for the first time. An immunosensor has been designed, for which the anti-apolipoprotein B-100 antibody was covalently attached to 4-aminothiophenol (4-ATP) on the surface of the gold electrode. In the case of an aptasensor, the gold electrode was modified in a mixture of ssDNA aptamer specific for LDL modified with –SH group and 6-mercaptohexanol. Square-wave voltammetry has been used for detection of LDL in PBS containing redox active marker, [Fe(CN)6]3−/4−. Our results show the linear dependence of [Fe(CN)6]3−/4− redox signal changes on LDL concentration for both biosensors, in the range from 0.01 ng/mL to 1.0 ng/mL. The limit of detection was 0.31 and 0.25 ng/mL, for immuno- and aptasensor, respectively. Whereas slightly better selectivity toward human serum albumin (HSA), high density lipoprotein (HDL), and malondialdehyde modified low density lipoprotein (MDA-LDL) has been observed for aptasensor. Moreover, the other components of human blood serum samples did not influence aptasensor sensitivity.
Collapse
|
4
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
5
|
Yeh N, Zhu Y, Moeller KD. Electroorganic Synthesis and the Construction of Addressable Molecular Surfaces. ChemElectroChem 2019; 6:4134-4143. [DOI: 10.1002/celc.201900851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nai‐Hua Yeh
- Department of ChemistryWashington University in St. Louis St. Louis, MO 63130 USA
| | - Yu Zhu
- Department of ChemistryWashington University in St. Louis St. Louis, MO 63130 USA
| | - Kevin D. Moeller
- Department of ChemistryWashington University in St. Louis St. Louis, MO 63130 USA
| |
Collapse
|
6
|
Kurzątkowska K, Sayin S, Yilmaz M, Radecka H, Radecki J. Gold Electrodes Modified with Calix[4]arene for Electrochemical Determination of Dopamine in the Presence of Selected Neurotransmitters. SENSORS 2017; 17:s17061368. [PMID: 28608815 PMCID: PMC5492125 DOI: 10.3390/s17061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
Abstract
Here, we present an electrochemical sensor based on gold electrodes modified with calix[4]arene functionalized with carboxypiperidino groups at the upper rim. It has been demonstrated that these groups are involved in a complex formation with dopamine (DA) on the surface of gold electrodes. The supramolecular complex calix[4]arene–DA created on the gold electrode surface has been characterized electrochemically and the measuring conditions have been optimized. The presented sensor displayed a detection limit in the pM range. The DA determination was performed successfully in the presence of ascorbic acid, uric acid and selected neurotransmitters.
Collapse
Affiliation(s)
- Katarzyna Kurzątkowska
- Department of Biosensors, Institute of Animal Reproduction and Food Research Polish Academy of Science, Tuwima 10 Street, Olsztyn 10-748, Poland.
| | - Serkan Sayin
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun-28200, Turkey.
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya 42100, Turkey.
| | - Hanna Radecka
- Department of Biosensors, Institute of Animal Reproduction and Food Research Polish Academy of Science, Tuwima 10 Street, Olsztyn 10-748, Poland.
| | - Jerzy Radecki
- Department of Biosensors, Institute of Animal Reproduction and Food Research Polish Academy of Science, Tuwima 10 Street, Olsztyn 10-748, Poland.
| |
Collapse
|
7
|
Kurzątkowska K, Sirko A, Zagórski-Ostoja W, Dehaen W, Radecka H, Radecki J. Electrochemical Label-free and Reagentless Genosensor Based on an Ion Barrier Switch-off System for DNA Sequence-Specific Detection of the Avian Influenza Virus. Anal Chem 2015; 87:9702-9. [DOI: 10.1021/acs.analchem.5b01988] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Katarzyna Kurzątkowska
- Institute
of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Agnieszka Sirko
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego
5A, 02-106 Warsaw, Poland
| | | | - Wim Dehaen
- Department
of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Hanna Radecka
- Institute
of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Radecki
- Institute
of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
8
|
Graaf MD, Moeller KD. Introduction to Microelectrode Arrays, the Site-Selective Functionalization of Electrode Surfaces, and the Real-Time Detection of Binding Events. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7697-7706. [PMID: 25536120 DOI: 10.1021/la504254e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microelectrode arrays have great potential as analytical tools because currents can be independently measured at each electrode in the array. In principle, these currents can be monitored in order to follow in real time the binding events that occur between the members of a molecular library and a biological target. To capitalize on this potential, the surface of the array must be selectively functionalized so that each unique member of the molecular library is associated with a unique individually addressable electrode or set of electrodes in the array. To this end, this instructional review summarizes methods for coating the arrays with porous polymers that allow for the attachment of molecules to the surface of the array, selectively conducting reactions at individual electrodes in the array, characterizing molecules that are placed on the arrays, and running the analytical experiments needed to monitor in real time binding events between molecules on the array and a biological target.
Collapse
Affiliation(s)
- Matthew D Graaf
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
New redox-active layer create via epoxy–amine reaction – The base of genosensor for the detection of specific DNA and RNA sequences of avian influenza virus H5N1. Biosens Bioelectron 2015; 65:427-34. [DOI: 10.1016/j.bios.2014.10.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023]
|
10
|
Uppal S, Graaf MD, Moeller KD. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings. BIOSENSORS-BASEL 2015; 4:318-28. [PMID: 25587425 PMCID: PMC4264361 DOI: 10.3390/bios4030318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 11/16/2022]
Abstract
PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point.
Collapse
Affiliation(s)
- Sakshi Uppal
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; E-Mails: (S.U.); (M.D.G.)
| | - Matthew D Graaf
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; E-Mails: (S.U.); (M.D.G.)
| | - Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; E-Mails: (S.U.); (M.D.G.)
| |
Collapse
|
11
|
Krejcova L, Nguyen HV, Hynek D, Guran R, Adam V, Kizek R. Paramagnetic Particles and PNA Probe for Automated Separation and Electrochemical Detection of Influenza. Chromatographia 2014. [DOI: 10.1007/s10337-014-2737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Malecka K, Michalczuk L, Radecka H, Radecki J. Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts. SENSORS 2014; 14:18611-24. [PMID: 25302809 PMCID: PMC4239951 DOI: 10.3390/s141018611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Lech Michalczuk
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
13
|
Moeller KD. Electrochemically Generated Organometallic Reagents and Site-Selective Synthesis on a Microelectrode Array. Organometallics 2014. [DOI: 10.1021/om500227f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin D. Moeller
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Nguyen BH, Kesselring D, Tesfu E, Moeller KD. Microelectrode arrays: a general strategy for using oxidation reactions to site selectively modify electrode surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2280-2286. [PMID: 24499393 DOI: 10.1021/la404895b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidation reactions are powerful tools for synthesis because they allow for the functionalization of molecules. Here, we present a general method for conducting these reactions on a microelectrode array in a site-selective fashion. The reactions are run as a competition between generation of a chemical oxidant at the electrodes in the array and reduction of the oxidant by a "confining agent" in the solution above the array. The "confining agent" does not need to be more reactive than the substrate fixed to the surface of the array. In many cases, the same substrate placed on the surface of the array can also be used in solution as the confining agent.
Collapse
Affiliation(s)
- Bichlien H Nguyen
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
15
|
Grabowska I, Singleton DG, Stachyra A, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecka H, Stulz E, Radecki J. A highly sensitive electrochemical genosensor based on Co-porphyrin-labelled DNA. Chem Commun (Camb) 2014; 50:4196-9. [DOI: 10.1039/c4cc00172a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-porphyrin-modified DNA was used to design an electrochemical genosensor which is able to detect a minimum of 1000 DNA molecules.
Collapse
Affiliation(s)
- Iwona Grabowska
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-747 Olsztyn, Poland
| | - Daniel G. Singleton
- School of Chemistry and Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ, UK
| | - Anna Stachyra
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- 02-106 Warsaw, Poland
| | | | - Hanna Radecka
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-747 Olsztyn, Poland
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ, UK
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-747 Olsztyn, Poland
| |
Collapse
|
16
|
Grabowska I, Stachyra A, Góra-Sochacka A, Sirko A, Olejniczak AB, Leśnikowski ZJ, Radecki J, Radecka H. DNA probe modified with 3-iron bis(dicarbollide) for electrochemical determination of DNA sequence of Avian Influenza Virus H5N1. Biosens Bioelectron 2014; 51:170-6. [DOI: 10.1016/j.bios.2013.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/01/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
17
|
Malecka K, Grabowska I, Radecki J, Stachyra A, Góra-Sochacka A, Sirko A, Radecka H. Electrochemical Detection of Avian Influenza Virus Genotype Using Amino-ssDNA Probe Modified Gold Electrodes. ELECTROANAL 2013. [DOI: 10.1002/elan.201300113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Krejcova L, Hynek D, Kopel P, Merlos Rodrigo MA, Adam V, Hubalek J, Babula P, Trnkova L, Kizek R. Development of a magnetic electrochemical bar code array for point mutation detection in the H5N1 neuraminidase gene. Viruses 2013; 5:1719-39. [PMID: 23860384 PMCID: PMC3738958 DOI: 10.3390/v5071719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022] Open
Abstract
Since its first official detection in the Guangdong province of China in 1996, the highly pathogenic avian influenza virus of H5N1 subtype (HPAI H5N1) has reportedly been the cause of outbreaks in birds in more than 60 countries, 24 of which were European. The main issue is still to develop effective antiviral drugs. In this case, single point mutation in the neuraminidase gene, which causes resistance to antiviral drug and is, therefore, subjected to many studies including ours, was observed. In this study, we developed magnetic electrochemical bar code array for detection of single point mutations (mismatches in up to four nucleotides) in H5N1 neuraminidase gene. Paramagnetic particles Dynabeads® with covalently bound oligo (dT)25 were used as a tool for isolation of complementary H5N1 chains (H5N1 Zhejin, China and Aichi). For detection of H5N1 chains, oligonucleotide chains of lengths of 12 (+5 adenine) or 28 (+5 adenine) bp labeled with quantum dots (CdS, ZnS and/or PbS) were used. Individual probes hybridized to target molecules specifically with efficiency higher than 60%. The obtained signals identified mutations present in the sequence. Suggested experimental procedure allows obtaining further information from the redox signals of nucleic acids. Moreover, the used biosensor exhibits sequence specificity and low limits of detection of subnanogram quantities of target nucleic acids.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Jaromir Hubalek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, Brno CZ-616 00, Czech Republic
| | - Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, Brno CZ-612 42, Czech Republic
| | - Libuse Trnkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-611 37, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
19
|
Cheng MS, Toh CS. Novel biosensing methodologies for ultrasensitive detection of viruses. Analyst 2013; 138:6219-29. [DOI: 10.1039/c3an01394d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Fellet MS, Bartels JL, Bi B, Moeller KD. Site-selective chemistry and the attachment of peptides to the surface of a microelectrode array. J Am Chem Soc 2012; 134:16891-8. [PMID: 22992158 DOI: 10.1021/ja308121d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptides have been site-selectively placed on microelectrode arrays with the use of both thiol-based conjugate additions and Cu(I)-coupling reactions between thiols and aryl halides. The conjugate addition reactions used both acrylate and maleimide Michael acceptors. Of the two methods, the Cu(I)-coupling reactions proved far superior because of their irreversibility. Surfaces constructed with the conjugate addition chemistry were not stable at neutral pHs, especially the surface using the maleimide acceptor. Once a peptide was placed onto the array, it could be monitored in "real-time" for its interactions with a biological receptor.
Collapse
|