A highly sensitive electrochemical sensor for the determination of methanol based on PdNPs@SBA-15-PrEn modified electrode.
Anal Biochem 2018;
548:32-37. [PMID:
29476709 DOI:
10.1016/j.ab.2018.01.033]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 01/06/2023]
Abstract
In this study, a novel electrochemical sensor for the determination of methanol based on palladium nanoparticles supported on Santa barbara amorphous-15- PrNHEtNH2 (PdNPs@SBA-15-PrEn) as nanocatalysis platform is presented. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical methods are employed to characterize the PdNPs@SBA-15-PrEn nanocomposite. The Nafion-Pd@SBA-15-PrEn modified glassy carbon electrode (Nafion-PdNPs@SBA-15-PrEn/GCE) displayed the high electrochemical activity and excellent catalytic characteristic for electro-oxidation of methanol in an alkaline solution. The electro-oxidation performance of the proposed sensor was investigated using cyclic voltammetry (CV) and amperometry. The sensor exhibits a good sensitivity of 0.0905 Amol-1 Lcm-2, linear range of 20-1000 μM and the corresponding detection limit of 12 μM (3σ). The results demonstrate that the Nafion-PdNPs@SBA-15-PrEn/GCE has potential as an efficient and integrated sensor for methanol detection.
Collapse