1
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Serum/plasma potassium monitoring using potentiometric point-of-care microanalyzers with improved ion selective electrodes. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Abstract
By its nature, a traditional potentiometric cell composed of an Ag/AgCl-based reference electrode and a solid-contact indicating electrode is not symmetric. This results in undesirable potential drifts in response to a common perturbation such as a temperature change of the sample. We propose here an approach to restore symmetry by constructing a cell with two identical solid-contact ISEs used as reference and indicating electrodes. In this arrangement, the reference electrode is immersed in a compartment containing a constant background of an ion of interest, while the indicating electrode is directly immersed in the sample solution. This approach was successfully demonstrated for a cell composed of nitrate-selective electrodes with the hydrophobic derivative of poly(3,4-ethylenedioxythiophene) as a transducer layer. In particular, the symmetric setup is shown to lower by 4-5 times the observed potential drift resulting from temperature changes between +25 and +5 °C.
Collapse
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Tara Forrest
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
4
|
Jaramillo EA, Noell AC. Development of Miniature Solid Contact Ion Selective Electrodes for
in situ
Instrumentation. ELECTROANAL 2020. [DOI: 10.1002/elan.201900761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. A. Jaramillo
- Jet Propulsion Laboratory California Institute of Technology Pasadena California
| | - A. C. Noell
- Jet Propulsion Laboratory California Institute of Technology Pasadena California
| |
Collapse
|
5
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
6
|
Weber AW, O’Neil GD, Kounaves SP. Solid Contact Ion-Selective Electrodes for in Situ Measurements at High Pressure. Anal Chem 2017; 89:4803-4807. [DOI: 10.1021/acs.analchem.7b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew W. Weber
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02115, United States
| | - Glen D. O’Neil
- Department
of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Samuel P. Kounaves
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02115, United States
| |
Collapse
|
7
|
|
8
|
Vanamo U, Bobacka J. Instrument-Free Control of the Standard Potential of Potentiometric Solid-Contact Ion-Selective Electrodes by Short-Circuiting with a Conventional Reference Electrode. Anal Chem 2014; 86:10540-5. [DOI: 10.1021/ac501464s] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulriika Vanamo
- Laboratory of Analytical
Chemistry, Process
Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku-Åbo, Finland
| | - Johan Bobacka
- Laboratory of Analytical
Chemistry, Process
Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku-Åbo, Finland
| |
Collapse
|