1
|
Wang W, Xing Z, Ren H, Wang Q, Gao X, Nie C, Ju Z. MnFe Prussian Blue Analogue Open Cages for Sodium-Ion Batteries: Simultaneous Evolution of Structure, Morphology, and Energy Storage Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402072. [PMID: 38773874 DOI: 10.1002/smll.202402072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Indexed: 05/24/2024]
Abstract
Prussian blue analogues (PBAs) exhibiting hollow morphologies have garnered considerable attention owing to their remarkable electrochemical properties. In this study, a one-pot strategy is proposed for the synthesis of MnFe PBA open cages. The materials are subsequently employed as cathode electrode in sodium-ion batteries (SIBs). The simultaneous evolution of structure, morphology, and performance during the synthesis process is investigated. The findings reveal substantial structural modifications as the reaction time is prolonged. The manganese content in the samples diminishes considerably, while the potassium content experiences an increase. This compositional variation is accompanied by a significant change in the spin state of the transition metal ions. These structural transformations trigger the occurrence of the Kirkendall effect and Oswald ripening, culminating in a profound alteration of the morphology of MnFe PBA. Moreover, the shifts in spin states give rise to distinct changes in their charge-discharge profiles and redox potentials. Furthermore, an exploration of the formation conditions of the samples and their variations before and after cycling is conducted. This study offers valuable insights into the intricate relationship between the structure, morphology, and electrochemical performance of MnFe PBA, paving the way for further optimizations in this promising class of materials for energy storage applications.
Collapse
Affiliation(s)
- Weilu Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Zheng Xing
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Haipeng Ren
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
- SVOLT, No. 2199 Chaoyang South Street, Baoding City, Hebei Province, 071000, P. R. China
| | - Qinglin Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xinran Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Chuanhao Nie
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Zhicheng Ju
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| |
Collapse
|
2
|
Tootoonchian P, Kwiczak-Yiğitbaşı J, Turab Ali Khan M, Chalil Oglou R, Holló G, Karadas F, Lagzi I, Baytekin B. A Dormant Reagent Reaction-Diffusion Method for the Generation of Co-Fe Prussian Blue Analogue Periodic Precipitate Particle Libraries. Chemistry 2023; 29:e202301261. [PMID: 37098116 DOI: 10.1002/chem.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023]
Abstract
Liesegang patterns that develop as a result of reaction-diffusion can simultaneously form products with slightly different sizes spatially separated in a single medium. We show here a reaction-diffusion method using a dormant reagent (citrate) for developing Liesegang patterns of cobalt hexacyanoferrate Prussian Blue analog (PBA) particle libraries. This method slows the precipitation reaction and produces different-sized particles in a gel medium at different locations. The gel-embedded particles are still catalytically active. Finally, the applicability of the new method to other PBAs and 2D systems is presented. The method proves promising for obtaining similar inorganic framework libraries with catalytic abilities.
Collapse
Affiliation(s)
| | | | | | | | - Gábor Holló
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Ferdi Karadas
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
- UNAM, Bilkent University, Ankara, 06800, Turkey
| | - István Lagzi
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Bilge Baytekin
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
- UNAM, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
3
|
Synthesis of nanocubic shape controlled Gold-Prussian blue nanocomposite for enhanced electrocatalytic hydrazine oxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Ping Q, Xu B, Ma X, Tian J, Wang B. An iron oxyborate Fe3BO5 material as a high-performance anode for lithium-ion and sodium-ion batteries. Dalton Trans 2019; 48:5741-5748. [DOI: 10.1039/c9dt00010k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The surface pseudocapacitance contribution is dominant in Na+ storage processes in favour of the high rate performance of Fe3BO5.
Collapse
Affiliation(s)
- Qiushi Ping
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Beibei Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Xiao Ma
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Jianliya Tian
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Baofeng Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- China
| |
Collapse
|
5
|
Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, Dresselhaus MS. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep 2016; 6:37009. [PMID: 27845441 PMCID: PMC5109467 DOI: 10.1038/srep37009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi's damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.
Collapse
Affiliation(s)
| | - Bunshi Fugetsu
- Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichiro Sakata
- School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan.,Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Isogai
- School of Agriculture and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Morinobu Endo
- Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Mingda Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mildred S Dresselhaus
- Department of Physics and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|