1
|
Ting WT, Ali MY, Mitea V, Wang MJ, Howlader MMR. Polyaniline-based bovine serum albumin imprinted electrochemical sensor for ultra-trace-level detection in clinical and food safety applications. Int J Biol Macromol 2024; 277:134137. [PMID: 39067725 DOI: 10.1016/j.ijbiomac.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 μA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.
Collapse
Affiliation(s)
- Wei-Ting Ting
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan
| | - Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Victor Mitea
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan.
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
Solid-state ion-selective electrodes for the first potentiometric determination of the anti-COVID 19 drug Remdesivir in human plasma; A comparative study. Microchem J 2023; 190:108658. [PMID: 36970552 PMCID: PMC10028218 DOI: 10.1016/j.microc.2023.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Establishing sensitive and targeted analytical methodologies for drug identification in biological fluids as well as screening of treatments that can counteract the most severe COVID-19 infection-related side effects are of utmost importance. Here, first attempts have been made for determination of the anti-COVID drug Remdesivir (RDS) in human plasma using four potentiometric sensors. Calixarene-8 (CX8) was used as an ionophore applied to the first electrode (Sensor I). The second had a layer of dispersed graphene nanocomposite coating (Sensor II). (Sensor III) was fabricated using nanoparticles of polyaniline (PANI) as ion-to–electron transducer. A reverse-phase polymerization using polyvinylpyrrolidone (PVP) was employed to create a graphene-polyaniline (G/PANI) nanocomposite electrode (Sensor IV). Surface morphology was confirmed by Scanning Electron Microscope (SEM). UV absorption spectra and Fourier Transform Ion Spectrophotometry (FTIR) also supported their structural characterization. The impact of graphene and polyaniline integration on the functionality and durability of the manufactured sensors was examined using the water layer test and signal drift. In the ranges of concentration of 10−7 to 10−2 mol/L and 10−7 to 10−3, sensors II & IV exhibited linear responses; respectively while sensors I & III displayed linearity within 10−6 to 10−2 mol/L. The target drug was easily detectable using LOD down to 100 nmol/L. The developed sensors satisfactorily offered sensitive, stable, selective and accurate estimate of Remdesivir (RDS) in its pharmaceutical formulation as well as spiked human plasma with recoveries ranging from 91.02 to 95.76 % with average standard deviations less than 1.85. The suggested procedure was approved in accordance with ICH recommendations.
Collapse
|
3
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
4
|
Optimization of oxidant for polymerization of indole in water-ethanol medium. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Aggas JR, Walther BK, Abasi S, Kotanen CN, Karunwi O, Wilson AM, Guiseppi-Elie A. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B. Biosens Bioelectron 2020; 176:112889. [PMID: 33358581 DOI: 10.1016/j.bios.2020.112889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose. The present review takes a critical look of these contributions over the past 20 years and offers some perspective on the future of bioelectronics-based biosensors and systems. Particular attention is given to multiplexed biosensor systems and data fusion for rapid decision making.
Collapse
Affiliation(s)
- John R Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Brandon K Walther
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20814, USA.
| | - Olukayode Karunwi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics, Anderson University, 316 Boulevard, Anderson, SC, 29621, USA.
| | - Ann M Wilson
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| |
Collapse
|
6
|
Shumakovich GP, Khlupova ME, Vasil’eva IS, Zaitseva EA, Gromova EV, Morozova OV, Yaropolov AI. Laccase-Catalyzed Aniline Polymerization on Multiwalled Carbon Nanotubes: the Effect of Surface Carboxyl Groups on Polyaniline Properties. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819010162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yesappa L, Niranjana M, Ashokkumar S, Vijeth H, Raghu S, Devendrappa H. Characterization, Electrical Conductivity and Electrochemical Performance of Polyaniline-LiClO4-CuO Nano Composite for Energy Storage Applications. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- L Yesappa
- Department of Physics, Mangalore University, Mangalagangothri, India
| | - M Niranjana
- Department of Physics, Mangalore University, Mangalagangothri, India
| | - S Ashokkumar
- Department of Physics, Mangalore University, Mangalagangothri, India
| | - H Vijeth
- Department of Physics, Mangalore University, Mangalagangothri, India
| | - S Raghu
- Department of Physics, Mangalore University, Mangalagangothri, India
| | - H Devendrappa
- Department of Physics, Mangalore University, Mangalagangothri, India
| |
Collapse
|
8
|
Aggas JR, Harrell W, Lutkenhaus J, Guiseppi-Elie A. Metal-polymer interface influences apparent electrical properties of nano-structured polyaniline films. NANOSCALE 2018; 10:672-682. [PMID: 29239451 DOI: 10.1039/c7nr06503e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interface between the conductive polymer, polyaniline (PAn-Cl), and gold, platinum, or an interceding layer of electrodeposited platinum on gold or platinum, markedly influences the apparent electrical properties and the electronic to ionic transition in physiological buffers. Polyester-supported, sputter-deposited gold and platinum thin films were laser patterned to yield co-planar Thin Film Electrodes (TFEs) suitable for platinization and deposition of PAn-Cl nanofibers. Electrodeposition of platinum from chloroplatinic acid (50 mC cm-2) onto gold produced larger feature sizes and larger surface roughness (23.5 nm) when compared to platinization of platinum (15.2 nm) and both similarly reduced interfacial impedance in water and physiologically relevant buffers, PBS and HEPES. UV-Vis characterization produced absorption edges (DI water 2.36 eV, PBS 2.64 eV, and HEPES 2.66 eV) reflective of the ionic strength of the medium. Thin films (23 ± 2 μm) of PAn-Cl nanofibers were deposited onto Au, Pt, Au|Pt, Pt|Pt TFEs and each characterized by Electrical Impedance Spectroscopy (EIS) over the range 106-10-1 Hz at RT in air, DI water, PBS, and HEPES buffers and by multiple scan rate cyclic voltammetry (MSRCV) in PBS. Platinized gold and platinized platinum decorated with PAn-Cl behaved quite differently in these test environments confirming a role for the contacting surface roughness/nano-topography in influencing apparent electrical properties. Equivalent circuit modeling of EIS data revealed a modified Randles circuit (R(QR)) of low chi-square values (<0.05) that rationalized the capacitance and membrane resistance and confirmed that platinization of gold served to increase the PAn-Cl apparent resistance while platinization of platinum served to decrease the PAn-Cl apparent resistance.
Collapse
Affiliation(s)
- John R Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
9
|
Hameed S, Munawar A, Khan WS, Mujahid A, Ihsan A, Rehman A, Ahmed I, Bajwa SZ. Assessing manganese nanostructures based carbon nanotubes composite for the highly sensitive determination of vitamin C in pharmaceutical formulation. Biosens Bioelectron 2017; 89:822-828. [DOI: 10.1016/j.bios.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/08/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022]
|
10
|
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP. Recent Advances in the Fabrication and Application of Screen-Printed Electrochemical (Bio)Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses. BIOSENSORS 2016; 6:E50. [PMID: 27690118 PMCID: PMC5192370 DOI: 10.3390/bios6040050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
Abstract
This review describes recent advances in the fabrication of electrochemical (bio)sensors based on screen-printing technology involving carbon materials and their application in biomedical, agri-food and environmental analyses. It will focus on the various strategies employed in the fabrication of screen-printed (bio)sensors, together with their performance characteristics; the application of these devices for the measurement of selected naturally occurring biomolecules, environmental pollutants and toxins will be discussed.
Collapse
Affiliation(s)
- Gareth Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kelly Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kevin C Honeychurch
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
11
|
Marmisollé WA, Gregurec D, Moya S, Azzaroni O. Polyanilines with Pendant Amino Groups as Electrochemically Active Copolymers at Neutral pH. ChemElectroChem 2015. [DOI: 10.1002/celc.201500315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA); Departamento de Química; Facultad de Ciencias Exactas; Universidad Nacional de La Plata (UNLP)-CONICET; 64 and 113 - La Plata 1900) Argentina
| | - Danijela Gregurec
- Soft Matter Nanotechnology Group; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastian Gipuzkoa Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Group; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastian Gipuzkoa Spain
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA); Departamento de Química; Facultad de Ciencias Exactas; Universidad Nacional de La Plata (UNLP)-CONICET; 64 and 113 - La Plata 1900) Argentina
| |
Collapse
|
12
|
Milakin KA, Yaremenko IA, Smirnova AV, Pyshkina OA, Sergeyev VG. Effect of multiwall carbon nanotubes surface on polymerization of aniline and properties of its products. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215050242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Pandey PC, Prakash A. Electrochemistry of redox mediators encapsulated within organically modified silicate matrix in the presence of TiO2 and palladium nanoparticles; application on electroanalysis of ascorbic acid. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Boeva ZA, Sergeyev VG. Polyaniline: Synthesis, properties, and application. POLYMER SCIENCE SERIES C 2014. [DOI: 10.1134/s1811238214010032] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Fuenmayor CA, Benedetti S, Pellicanò A, Cosio MS, Mannino S. Direct In Situ Determination of Ascorbic Acid in Fruits by Screen-Printed Carbon Electrodes Modified with Nylon-6 Nanofibers. ELECTROANAL 2014. [DOI: 10.1002/elan.201300595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Li M, Liu W, P.Correia J, Mourato AC, Viana AS, Jin G. Optical and Electrochemical Combination Sensor with Poly-Aniline Film Modified Gold Surface and Its Application for Dissolved Oxygen Detection. ELECTROANAL 2014. [DOI: 10.1002/elan.201300459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Thakur B, Amarnath CA, Sawant SN. Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Adv 2014. [DOI: 10.1039/c4ra05264a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile strategy for synthesis of polyaniline nanoparticles and their application for development of highly sensitive amperometric glucose biosensor is demonstrated herein.
Collapse
Affiliation(s)
- Bhawana Thakur
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | | | - Shilpa N. Sawant
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| |
Collapse
|