1
|
Banciu CA, Nastase F, Istrate AI, Veca LM. 3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules 2022; 27:molecules27113634. [PMID: 35684569 PMCID: PMC9181857 DOI: 10.3390/molecules27113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we highlight recent advancements in 3D graphene foam synthesis by template-assisted chemical vapor deposition, as well as their potential energy storage and conversion applications. This method offers good control of the number of graphene layers and porosity, as well as continuous connection of the graphene sheets. The review covers all the substrate types, catalysts, and precursors used to synthesize 3D graphene by the CVD method, as well as their most viable energy-related applications.
Collapse
Affiliation(s)
- Cristina Antonela Banciu
- National Institute for Research and Development in Electrical Engineering ICPE-CA Bucharest, 313 Splaiul Unirii, 030138 Bucharest, Romania;
| | - Florin Nastase
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A Erou Iancu Nicolae, 077190 Voluntari, Romania; (F.N.); (A.-I.I.)
| | - Anca-Ionela Istrate
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A Erou Iancu Nicolae, 077190 Voluntari, Romania; (F.N.); (A.-I.I.)
| | - Lucia Monica Veca
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A Erou Iancu Nicolae, 077190 Voluntari, Romania; (F.N.); (A.-I.I.)
- Correspondence:
| |
Collapse
|
2
|
Silah H, Erkmen C, Demir E, Uslu B. Modified indium tin oxide electrodes: Electrochemical applications in pharmaceutical, biological, environmental and food analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
4
|
Li Y, Zhang Y, Yu Y, Chen Z, Jin L, Cao M, Dai H, Yao J. A Broadband Phototransistor Based on Three-Dimensional Reduced Graphene Oxide Foam. NANOMATERIALS 2018; 8:nano8110913. [PMID: 30404202 PMCID: PMC6266096 DOI: 10.3390/nano8110913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023]
Abstract
Three-dimensional (3D) cross-linked polymer-like reduced graphene oxide foams (rGOFs) with a seamlessly continuous graphene network, exhibit high photoresponsive and conductivity and have received much attention regarding solar cells and supercapacitors. However, little attention has been paid to photodetection applications of 3D rGOFs. Here we report a novel broadband phototransistor based on metal-3D GFs-metal, which exhibits a high light absorption and a wide spectra response ranging at least from 400 to 1600 nm wavelength with a maximum photoresponsivity of 10 mA/W at 400 nm. In particular, stable and reproducible photocurrent cycles are achieved under different light blue light (405 nm), green light (532 nm), and NIR (808 nm) irradiations. Moreover, the device displays a typical transistor characteristic with a rapid response time of 18 ms at under 532 nm irradiation. The excellent performances indicate 3D rGOF as a promising candidate for future photodetection application.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yating Zhang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yu Yu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhiliang Chen
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Lufan Jin
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Mingxuan Cao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China.
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
The Efficacy of Graphene Foams for Culturing Mesenchymal Stem Cells and Their Differentiation into Dopaminergic Neurons. Stem Cells Int 2018; 2018:3410168. [PMID: 29971110 PMCID: PMC6008666 DOI: 10.1155/2018/3410168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
The implantation of stem cells in vivo is the ideal approach for the restoration of normal life functions, such as replenishing the decreasing levels of affected dopaminergic (DA) neurons during neurodegenerative disease conditions. However, combining stem cells with biomaterial scaffolds provides a promising strategy for engineering tissues or cellular delivery for directed stem cell differentiation as a means of replacing diseased/damaged tissues. In this study, mouse mesenchymal stem cells (MSCs) were differentiated into DA neurons using sonic hedgehog, fibroblast growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor, while they were cultured within collagen-coated 3D graphene foams (GF). The differentiation into DA neurons within the collagen-coated GF and controls (collagen gels, plastic) was confirmed using β-III tubulin, tyrosine hydroxylase (TH), and NeuN positive immunostaining. Enhanced expression of β-III tubulin, TH, and NeuN and an increase in the average neurite extension length were observed when cells were differentiated within collagen-coated GF in comparison with collagen gels. Furthermore, these graphene-based scaffolds were not cytotoxic as MSC seemed to retain viability and proliferated substantially during in vitro culture. In summary, these results suggest the utility of 3D graphene foams towards the differentiation of DA neurons from MSC, which is an important step for neural tissue engineering applications.
Collapse
|
6
|
Üğe A, Koyuncu Zeybek D, Zeybek B. An electrochemical sensor for sensitive detection of dopamine based on MWCNTs/CeO 2 -PEDOT composite. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
8
|
Yue HY, Zhang H, Huang S, Lin XY, Gao X, Chang J, Yao LH, Guo EJ. Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron 2016; 89:592-597. [PMID: 26852156 DOI: 10.1016/j.bios.2016.01.078] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/24/2015] [Accepted: 01/28/2016] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) graphene foam (GF) was prepared by chemical vapor deposition (CVD) using nickel foam as the template. ZnO nanowire arrays (ZnO NWAs) were vertically grown on the 3D GF by hydrothermal synthesis to prepare ZnO NWAs/GF. This hybrid combines the properties of ZnO NWAs and 3D GF, which has favorable electrocatalysis and outstanding electrical conductivity. The vertically aligned ZnO NWAs grown on the GF enlarged the electroactive surface area, which was investigated from the Fe(CN)63-4+ redox kinetic study. The ZnO NWAs/GF was used as an electrochemical electrode for the determination of Levodopa (LD) in the presence of uric acid (UA). The electrochemical responses of the ZnO NWAs/GF electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results show that the sensitivity of the electrode for LD is 3.15μAμM-1 in the concentration range of 0.05-20μM and the measured detection limit of the electrode for LD is 50nM. The electrode also shows good selectivity, reproducibility and stability. The proposed electrode is succsefully used to determine LD in human plasma samples and it is potential for use in clinical research.
Collapse
Affiliation(s)
- Hong Yan Yue
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China.
| | - Hong Zhang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Xuan Yu Lin
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Xin Gao
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Jing Chang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Long Hui Yao
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Er Jun Guo
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| |
Collapse
|
9
|
Gao J, Zhang S, Liu M, Tai Y, Song X, Qian Y, Song H. Synergistic combination of cyclodextrin edge-functionalized graphene and multiwall carbon nanotubes as conductive bridges toward enhanced sensing response of supramolecular recognition. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Anal Biochem 2015; 488:22-7. [DOI: 10.1016/j.ab.2015.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
|
11
|
Pandikumar A, Soon How GT, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA, Lim HN, Huang NM. Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 2014. [DOI: 10.1039/c4ra13777a] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review, the recent progress in the electrochemical sensing of dopamine with various graphene and their nanocomposite materials modified electrodes are presented.
Collapse
Affiliation(s)
- Alagarsamy Pandikumar
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Gregory Thien Soon How
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Teo Peik See
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Fatin Saiha Omar
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Subramaniam Jayabal
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Khosro Zangeneh Kamali
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Norazriena Yusoff
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Asilah Jamil
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 Serdang, Malaysia
| | - Ramasamy Ramaraj
- School of Chemistry
- Centre for Photoelectrochemistry
- Madurai Kamaraj University
- Madurai-625021, India
| | - Swamidoss Abraham John
- Centre for Nanoscience & Nanotechnology
- Department of Chemistry
- Gandhigram Rural University
- Gandhigram-624302, India
| | - Hong Ngee Lim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 Serdang, Malaysia
- Functional Device Laboratory
| | - Nay Ming Huang
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| |
Collapse
|