1
|
Lin D, Zhang H, An X, Chang L, Alameen A, Ding S, Du X, Hao X. Theoretical calculation assisted materials screening of BiOX (X = F, Cl, Br, I) for electrochemical absorption of cesium ions. Phys Chem Chem Phys 2021; 23:8500-8507. [PMID: 33876013 DOI: 10.1039/d0cp06195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical switching ion exchange (ESIX) technique has been widely used for the separation and recovery of radioactive cesium ions (Cs+) from wastewater. In this study, a series of BiOX (X = F, Cl, Br, I) materials were first evaluated for their absorption properties to Cs+ through density functional theory (DFT) calculations. The calculations predict that BiOBr has the best absorption performance among the four materials, BiOF, BiOCl, BiOBr, and BiOI, due to its high absorption energy and low ion migration energy barrier to Cs+. Simultaneously, the selectivity calculations revealed that BiOBr also showed the best selectivity for Cs+ compared with Li+ and Na+. Subsequently, four materials were prepared using the hydrothermal synthesis method and their electrochemical absorption performance was tested. The results showed that BiOBr has the highest electroactivity, and its absorption capacity was up to 16 mg Cs+/g BiOBr in a solution mixture of 50 ppm Li+, Na+, and Cs+. Based on our theoretical calculations and experiments, our findings provide prospective insights for predicting the electrochemical absorption performance of materials using first-principles calculations.
Collapse
Affiliation(s)
- Dongcheng Lin
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Huixin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Xiaowei An
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Lutong Chang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Ayman Alameen
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Shengqi Ding
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| |
Collapse
|
2
|
Bashir A, Ahad S, Malik LA, Qureashi A, Manzoor T, Dar GN, Pandith AH. Revisiting the Old and Golden Inorganic Material, Zirconium Phosphate: Synthesis, Intercalation, Surface Functionalization, and Metal Ion Uptake. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arshid Bashir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Sozia Ahad
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Lateef Ahmad Malik
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Aaliya Qureashi
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Taniya Manzoor
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Ghulam Nabi Dar
- Department of Physics, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Altaf Hussain Pandith
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| |
Collapse
|
3
|
Lyu Y, Gan S, Bao Y, Zhong L, Xu J, Wang W, Liu Z, Ma Y, Yang G, Niu L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. MEMBRANES 2020; 10:membranes10060128. [PMID: 32585903 PMCID: PMC7345918 DOI: 10.3390/membranes10060128] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- Correspondence: (S.G.); (L.N.)
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Guifu Yang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China;
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
- Correspondence: (S.G.); (L.N.)
| |
Collapse
|
4
|
Shi JJ, Zhu JC, Zhao M, Wang Y, Yang P, He J. Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS 2-CdS:Mn nanocomposites by the formation of G-quadruplex structure. Talanta 2018; 183:237-244. [PMID: 29567170 DOI: 10.1016/j.talanta.2018.02.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/13/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
An ultrasensitive photoelectrochemical (PEC) aptasensor for lead ion (Pb2+) detection was fabricated based on MoS2-CdS:Mn nanocomposites and sensitization effect of CdTe quantum dots (QDs). MoS2-CdS:Mn modified electrode was used as the PEC matrix for the immobilization of probe DNA (pDNA) labeled with CdTe QDs. Target DNA (tDNA) were hybridized with pDNA to made the QDs locate away from the electrode surface by the rod-like double helix. The detection of Pb2+ was based on the conformational change of the pDNA to G-quadruplex structure in the presence of Pb2+, which made the labeled QDs move close to the electrode surface, leading to the generation of sensitization effect and evident increase of the photocurrent intensity. The linear range was 50 fM to 100 nM with a detection limit of 16.7 fM. The recoveries of the determination of Pb2+ in real samples were in the range of 102.5-108.0%. This proposed PEC aptasensor provides a new sensing strategy for various heavy metal ions at ultralow levels.
Collapse
Affiliation(s)
- Jian-Jun Shi
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China.
| | - Jing-Chun Zhu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Ming Zhao
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Yan Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Ping Yang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Jie He
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| |
Collapse
|
5
|
Bashir A, Ahad S, Pandith AH. Soft Template Assisted Synthesis of Zirconium Resorcinol Phosphate Nanocomposite Material for the Uptake of Heavy-Metal Ions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arshid Bashir
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Sozia Ahad
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Altaf Hussain Pandith
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
6
|
Zhang Q, Du X, Ma X, Hao X, Guan G, Wang Z, Xue C, Zhang Z, Zuo Z. Facile preparation of electroactive amorphous α-ZrP/PANI hybrid film for potential-triggered adsorption of Pb(2+) ions. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:91-100. [PMID: 25710819 DOI: 10.1016/j.jhazmat.2015.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/06/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
An electroactive hybrid film composed of amorphous α-zirconium phosphate and polyaniline (α-ZrP/PANI) is controllably synthesized on carbon nanotubes (CNTs) modified Au electrodes in aqueous solution by cyclic voltammetry method. Electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM) and X-ray power diffraction (XRD) analysis are applied for the evaluation of the synthesis process. It is found that the exfoliated amorphous α-ZrP nanosheets are well dispersed in PANI and the hydrolysis of α-ZrP is successfully suppressed by controlling the exfoliation temperature and adding appropriate supporting electrolyte. The insertion/release of heavy metals into/from the film is reversibly controlled by a potential-triggered mechanism. Herein, α-ZrP, a weak solid acid, can provide an acidic micro-environment for PANI to promote the electroactivity in neutral aqueous solutions. Especially, the hybrid film shows excellent potential-triggered adsorption of Pb(2+) ion due to the selective complexation of Pb(2+) ion with oxygen derived from P-O-H of α-ZrP. Also, it shows long-term cycle stability and rapid potential-responsive adsorption/desorption rate. This kind of novel hybrid film is expected to be a promising potential-triggered ESIX material for separation and recovery of heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan
| | - Xuli Ma
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Guoqing Guan
- North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan
| | - Zhongde Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chunfeng Xue
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhonglin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhijun Zuo
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|